
A Hidden Markov Model

Information Retrieval System

David R. H. Miller, Tim Leek, Richard M. Schwartz

BBN Technologies

Cambridge, MA USA

{dmiller,tleek,schwartz}@bbn.com

Abstract

We present a new method for information retrieval using

hidden Markov models (HMMs). We develop a general

framework for incorporating multiple word generation

mechanisms within the same model. We then demon-

strate that an extremely simple realization of this model

substantially outperforms standard tf :idf ranking on

both the TREC-6 and TREC-7 ad hoc retrieval tasks.

We go on to present a novel method for performing

blind feedback in the HMM framework, a more com-

plex HMM that models bigram production, and several

other algorithmic re�nements. Together, these meth-

ods form a state-of-the-art retrieval system that ranked

among the best on the TREC-7 ad hoc retrieval task.

1 Introduction

Hidden Markov models have been applied successfully

over the last two decades in a wide variety of speech and

language related recognition problems including speech

recognition [9], named entity �nding [2], optical charac-

ter recognition [10], and topic identi�cation [19]. In the

present work, we describe an application of this tech-

nology to the problem of ad hoc information retrieval.

In all HMM applications, the observed data (e.g. au-

dio recording, image bitmap) is modeled as being the

output produced by passing some unknown key (e.g.

words, letters) through a noisy channel. In the ad hoc

retrieval problem, we take the observed data to be the

query Q, and the unknown key to be a desired relevant

document D. The noisy channel is the mind of a user,

who is imagined to have some notion (either rough or

precise) of which documents he wants, and who trans-

forms that notion into the text of the query Q. Thus,

we compute for each document the probability that D

was the relevant document in the user's mind, given

that Q was the query produced, i.e. P (D is RjQ), and
rank the documents based on this measure.

Using probability models for information retrieval

has a history almost four decades long, beginning with

the work of Maron and Kuhns [11], and �rst seeing

real application in the \standard probability model"

pioneered by Robertson and Sparck-Jones [15]. More

recently, however, the introduction of ad hoc constants

and non-linear smoothing functions have improved per-

formance steadily at the cost of drifting further and fur-

ther from the probabilistic framework. What started as

a reasonable probability model is now masked by nu-

merous heuristics. We believe our new hidden Markov

model is more closely tied to its formal probabilistic

underpinnings, making it easier to extend and reason

about. In addition, the HMM's performance is on a par

with the best automatic query systems.

The remainder of this paper is organized as follows:

Section 2 lays out the basic theory of the hidden Markov

model system and develops the formulas for a simple re-

alization of it; Section 3 presents experimental results

for the basic system on the TREC-6 and TREC-7 ad

hoc tasks, and compares the system with the familiar

tf :idf ranking; Section 4 develops several re�nements

of the basic HMM system, including a novel method of

blind feedback (Section 4.1) and a more complex HMM

which models the production of two-word phrases (Sec-

tion 4.2); Section 4 also presents experimental results

with these and other techniques used singly and jointly;

lastly, Section 5 o�ers some conclusions regarding the

system.

2 Probability Model

Given a user-generated query and a set of documents,

we wish to rank the documents according to the proba-

bility thatD is relevant, conditioned on the fact that the

user produced Q, i.e. P (D is RjQ). Applying Bayes'

rule, we decompose this into quantities that may be

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGIR '99 8/99 Berkley, CA USA
Copyright 1999 ACM 1-58113-096-1/99/0007 . . . $5.00

214

more easily estimated:

P (D is RjQ) =
P (QjD is R) � P (D is R)

P (Q)
(1)

where P (QjD is R) is the probability of the query be-

ing posed, under the hypothesis that the document is

relevant; P (D is R) is the prior probability that docu-

ment D is relevant; and P (Q) is the prior probability

of query Q being posed.

Since P (Q) will be identical for all documents D, we

can safely disregard it for the purposes of sorting doc-

uments. We will return in Section 4.4 to the question

of estimating the prior probability P (D is R), but for

now we shall assume that it, too, is constant across all

documents. We focus our attention on the remaining

term P (QjD is R).

We propose to model the generation of a query by

a user as a discrete hidden Markov process dependent

on the document the user has in mind.1 A discrete hid-

den Markov model is de�ned by a set of output sym-

bols, a set of states, a set of probabilities for transitions

between the states, and a probability distribution on

output symbols for each state. An observed sampling

of the process (i.e. the sequence of output symbols) is

produced by starting from some initial state, transition-

ing from it to another state, sampling from the output

distribution at that state, and then repeating these lat-

ter two steps. The transitioning and the sampling are

non-deterministic, and are governed by the probabili-

ties that de�ne the process. The term \hidden" refers

to the fact that an observer sees only the output sym-

bols, but doesn't know the underlying sequence of states

that generated them (since the same symbol could come

from any of the states). See [14] for an excellent intro-

duction to hidden Markov models and their application.

In the present application, we take the union of all

words appearing in the corpus as the set of output sym-

bols, and posit a separate state for each of several mech-

anisms of query word generation. There is a separate

process for each individual document which generates

the words of the query by traversing a random sequence

of states, and at each state producing a word according

to the output distribution of the state. Knowing the

query that was produced, we can easily compute the

probability of its being produced by each of the docu-

ments in the corpus. This is the P (QjD is R) term that

appears in Equation 1.

While one can employ as many HMM states as one

can imagine, we will restrict our discussion here to the

simple but powerful two-state HMM shown in Figure 1

(in Section 4.2 we discuss our experience with a three-

state HMM). The �rst state, labelled \Document" rep-

resents choosing a word directly from the document.

1In reality, a user rarely has only a single document in mind. How-
ever, we assign a probability to each hypothesis \the user has D in

mind", and rank the documents using that probability.

a
1

a
0

start
query query

end

Document

General English

P(q | GE)

P(q | D)

Figure 1: A simple two-state HMM.

bigram

topic

Document

synonyms

Gen. Eng.

. . .

. . .

Figure 2: An expanded multi-state HMM.

The second, labelled \General English", represents choos-

ing a word that is unrelated to the document, but that

occurs commonly in natural language queries. More

generally, the model can be easily extended to accom-

modate a broad variety of word generation mechanisms

involving synonyms, topic lexicons, or proper names

(see Figure 2).

The model pictured in Figure 1 carries the further

simpli�cation that there are only two transition prob-

abilities, a0 and a1 instead of the possible four. This

corresponds to an assumption that the choice of which

kind of word to generate next is independent of the

previous such choice. This assumption (which does not

preclude staying in the same state for several words in

a row) allows us to introduce two null states (states

producing no output) and simplify the drawing of the

model.

In order to use the HMM proposed, we must estimate

the transition probabilities and the output distributions

for every document in the corpus, since we have a sep-

arate HMM for each document. The EM (Estimation-

Maximization) algorithm [6, 3] is the canonical method

for computing these parameters. Performing EM re-

215

quires examples of sequences that have been generated

by the HMM, which in this case means examples of

documents paired with queries to which they were rel-

evant. However, such training examples are di�cult to

come by, and in practice it is usually the case that for

the overwhelming majority of documents there are no

training queries available.

In the face of this di�culty we have made two prac-

tical simpli�cations. First, we assume that the transi-

tion probabilities between the states are the same for

all documents. Second we abandon EM entirely for

the estimation of the output distributions, and instead

use simple maximum likelihood estimates for each doc-

ument. Though not entirely satisfactory, these assump-

tions make the parameter estimation problem tractable

while still delivering excellent performance.

To estimate the transition probabilities a0 and a1,

we use training examples and the EM algorithm as de-

scribed above, pooling the training data to get a single

estimate used across all documents.

The output distribution for the \Document" state,

P (qjD), is set to be the sample distribution on words

appearing in that document. Explicitly, for document

Dk we set

P (qjDk) =
number of times q appears in Dk

length of Dk

(2)

which is the distribution having the maximum likeli-

hood of producing Dk itself through repeated sampling.

Ideally, we would like the probability distribution of

the second state to be the distribution of words appear-

ing in natural language queries. However, since we do

not have su�cient numbers of training queries to esti-

mate this distribution well, we use instead the sample

distribution of the entire document corpus as a poor

approximation to this ideal. Thus, we label this state

\General English", and estimate it by

P (qjGE) =

P
k number of times q appears in DkP

k length of Dk

(3)

where the sum is taken over all documents in the corpus.

With these parameters estimated, we may now state

the the formula for P (QjDk is R) corresponding to Fig-

ure 1:

P (QjDk is R) =
Y
q2Q

(a0P (qjGE) + a1P (qjDk)): (4)

This expression, in turn, is used in Equation 1 to com-

pute P (Dk is RjQ), which is the value we use to rank

documents.

While Equation 4 bears some resemblance to ones

used by Ponte/Croft [12] and by Hiemstra/Kraiij [8],

it involves a di�erent smoothing term and is arrived

at through a di�erent theoretical derivation. Moreover,

when extended along the theoretic lines suggested by

the HMM (in Section 4) it diverges from these other

works considerably.

3 Baseline System Performance

In this section we report on ad hoc retrieval experi-

ments we performed on the TREC-6 and TREC-7 test

collections using the simple two-state system described

in Section 2. The TREC-6 collection comprises 556,077

documents from a variety of news and governmental

agencies [20]. The TREC-7 collection is a subset of the

TREC-6 collection containing 528,155 documents [22].

A set of 50 test topics (i.e. queries) accompanies each

collection, as does a set of relevance judgments listing

the documents relevant to each topic. The topics con-

tain \Title", \Description", and \Narrative" sections,

with an average total length (including repeated words)

of 88.4 words for TREC-6 and 57.6 words for TREC-

7[20, 22].

We indexed each corpus separately to create inverted

index �les recording the number of times each word ap-

pears in each document. For this indexing, we ignored

case and used Porter's algorithm [13] to con
ate words

with the same stem. We used a list of 397 \stop" words,

and replaced all occurrences of these words with the

special token *STOP*. In addition, we replaced certain

4-digit strings by the token *YEAR*, suspected dollar

amounts by *DOLLAR*, and remaining digit strings

by *NUMBER*. We applied the same pre-processing

to the queries, and then excluded the stop words from

further computation. After removing all stop words, the

TREC-6 queries had an average of 26.5 unique terms,

and the TREC-7 had an average of 17.6 unique terms.

Keeping these indices �xed, we ranked documents

for each query using the HMM measure of Equation 4,

and compared this ranking with that given by the well

known tf :idf measure. In particular, we used the tf :idf

measure presented in [16] and reproduced in Figure 3.

For the HMM transition probabilities, we used the EM

algorithm to train the value of a1 = 0:3 using training

examples from the TREC-4 collection [7].

Table 1 shows the non-interpolated average precision

(AveP) achieved by each ranking measure for a variety

of test conditions.2 In all cases, the HMM system dra-

matically outperforms tf :idf , exceeding it by as much

as 8 percentage points in absolute terms. Others [24]

have reported somewhat better performance from this

same tf :idf formula (though still not nearly as high as

2If r(D) is the rank of document d and Rel is the set of relevant

documents for a query Q, then non-interpolated average precision for
Q is de�ned as

1

jRelj

X

D2Rel

jfD0
2 Rel; r(D0) � r(D)gj

r(D)
:

This quantity is then averaged across all 50 queries.

216

tf :idf (Q;D) =
X
qi2Q

wtf (qi; D) � idf (qi)

wtf (q;D) =
tf (q;D)

tf (q;D) + 0:5 + 1:5
l(D)

al

idf (q) =
log N

nq

N + 1

N = number of documents in the corpus

nq = number of documents in the corpus containing q

tf (q;D) = number of times q appears in D

l(D) = length of D in words

al = avg length in words of a D in the corpus

Figure 3: Comparison tf :idf formula.

TREC-6 TREC-7

HMM tf :idf Di� HMM tf :idf Di�

Title 21.6 15.9 +5.8 16.1 11.6 +4.5

Desc 18.1 11.9 +6.2 18.3 14.2 +4.1

Narr 21.5 15.8 +5.7 17.7 14.7 +3.0

Full 27.1 18.9 +8.2 23.9 19.0 +4.9

Table 1: HMM scoring vs. tf :idf on TREC-6 and

TREC-7.

the HMM's performance3), which we attribute to dif-

ferences in indexing which would degrade our results

equally for both ranking formulas (e.g. exclusion of dif-

ferent SGML sections, di�erent stop words, di�erent

stemming). Since we used the same index for both sys-

tems in Table 1, we feel this is a valid comparison.

We are puzzled by the observation that the score

for the HMM on the full query decreases considerably

(3.2%) from TREC-6 to TREC-7, whereas for tf :idf it

increases slightly. Since both measures use only exact

matches on the stems in the query, we can think of

no characteristic change in the query set that would

hurt one system disproportionately more or less than

the other. Statistical variance may, in the end, be the

only explanation for the apparent inverse movement in

results between the two systems.

4 HMM Re�nements

Most IR systems do more than just compare the query

words with the documents. This section describes four

re�nements we have added to our system: blind feed-

back, bigram modeling, feature dependent priors, and

query section weighting. We describe and present ex-

3Dr. J. Xu reported 23.2 AveP on the TREC-6 full queries and
22.6 on the TREC-7 full queries in [24] using the formulas in Figure 3
and the UMass INQUERY indexing.

perimental results for each method separately, and then

present the results from using all the methods together.

4.1 Blind Feedback

Blind feedback is a well known technique for enhancing

the performance of a retrieval system by conducting a

preliminary search with the user's query, automatically

constructing a new query based on the top-ranked doc-

uments from that initial search, and then conducting

a second search with this new query before presenting

anything to the user. The Rocchio algorithm [17] is

perhaps the best known implementation of this idea,

although there are many others as well [18, 4]. We have

developed a novel algorithm for blind feedback that is

particularly suited for use with hidden Markov models.

We have also used this algorithm for true, user-guided,

relevance feedback with great success [5].

Our approach is to augment the initial query with

words appearing in two or more of the top N docu-

ments, and to adjust the HMM transition probabilities

for each word to account for how unexpected those ap-

pearances are. For example, seeing the word \very" in

90% of the top N retrieved document carries little in-

formation, while seeing \Nixon" in 90% of those same

documents is highly informative. We develop a method

below that captures this distinction in a principled fash-

ion.

For the two-state HMM, the transition probabilities

between the two states (a0 and a1) can be estimated

by the EM algorithm using training queries. For each

observation, the EM algorithm distributes the count for

that observation to the two-states in proportion to the

likelihood of each state's generating that word. Since

the \Document" state typically contains only hundreds

of words, while the \General English" state contains

hundreds of thousands, whenever the \Document" state

has a non-zero probability for a word it usually dwarfs

217

the probability from the \General English" state. As a

result, the estimate from EM for a1, the transition into

the \Document" state, is very close to that obtained

by calculating the probability that a query word is in

a document, given that the document is relevant. This

is4

P (q0 2 D

0jD0 is rel. to Q0) =

1

jQj

X
Qi2Q

X
w2Qi

jD s.t. w 2 D;D is rel. to Qij

jQij � jD is rel. to Qij
: (5)

where Q is the set of available training queries.

Using the fact that Equation 5 and the EM algo-

rithm give similar estimates for a1 as our motivation,

we consider the case where we have additional query

terms taken from the top N ranked documents from a

preliminary search for query Q. Given these top N doc-

uments, we partition the complete corpus lexicon into

N+1 disjoint sets of words that we callm-intersections:

Im;Q =

�
w appearing in exactly m of the

top N documents for query Q

�
(6)

for m = 0; 1; 2; : : : ; N . For those words q 2 Im;Q, it

is tempting to set the transition probability into the

document state to be

P (q0 2 D

0jD0 is rel. to Q0
; q

0 2 Im;Q0): (7)

But merely being in a high-order m-intersection is not

enough to be an important term. The most common

words in the corpus like \the", \a", and \is" would

turn up in IN;Q nearly all the time merely as a result

of their document frequency, and these carry no infor-

mation about the query Q.5

To compensate for this phenomenon, we condition

on and subtract out the baseline document frequency

of the words. We de�ne df (w) to be the percentage of

documents in the corpus containing word w. We then

de�ne

m;Q0;x = P

�
q

0 2 D

0

���� D
0 is rel. to Q0

;

q
0 2 Im;Q0 ; df (q0) = x

�
(8)

and set the transition probability for query terms in

Im;Q with a particular document frequency df (q) to be

a1 =
m;Q;df (q) � df (q): (9)

In truth, this is no longer a probability (and indeed not

even not guaranteed to positive), but rather the excess

4Here and in discussions below, we use a prime (0) to indicate a

variable that refers to a generic object, while an unmodi�ed variable
refers to a speci�c training or test object. Thus, Q0 is some abstract

query while Q is the current query posed to the system and Qi is one
of several training queries.

5The words \the", \a" and \is" are in our stop list, of course,
but the same argument applies for any word with high document

frequency that is not in the stop list.

TREC-6 TREC-7

basic HMM 27.1 23.9

w/blind feedback 30.6 27.4

improvement +3.5 +3.5

Table 2: Performance gain from blind feedback.

likelihood of a word's appearing due to relevance. In

practice,
m;Q;df (q) typically dwarfs df (q), so the esti-

mate for a1 is close to a true probability. We arbitrarily

oor the estimate at 0 to avoid negative values.

To compute an estimate for
, we take many training

queries and run a preliminary search with each of them

to obtain the top N ranked documents. We then count

the number of documents each query term appears in.

Since these are training queries, we know the complete

set of documents that are relevant to each query. With

this information we can estimate
m;Q0;x by the formula

1

jQj

X
Qi2Q

X
w2Qi

��� D s.t. w 2 D;D is rel. to Qi;

w 2 Im;Qi
; df (w) = x

���
jQij �

��� D s.t. D is rel. to Qi;

w 2 Im;Qi
; df (w) = x

���
:

(10)

Blind feedback produced a large and robust perfor-

mance improvement (see Table 2). We used the top 6

documents from the �rst retrieval to formm-intersections.

We discarded the terms in I0;Q, I1;Q, and I2;Q unless

they appeared in the original query as well. The ex-

panded TREC-6 queries had an average of 99.2 unique

terms (up from 26.5 unexpanded) and the TREC-7 queries

had an average of 85.2 unique terms (up from 17.6 unex-

panded). We trained the transition probabilities using

the 50 queries of the TREC-6 collection, and tested on

both the TREC-6 and TREC-7 collections. The im-

provement of 3.5 AveP on the TREC-6 queries (unfair

test on training) carried over exactly to the fair test con-

dition of the TREC-7 queries, indicating that we have

not overtuned our parameters to the training data.

4.2 Bigrams

Many words have a distinctive meaning when used in

the context of another word, or in a larger phrase. For

example, a query using the phrase \white house" is

much more likely to be satis�ed by a document using

those two words in sequence than by one that has them

separately. Other systems have attempted to model this

phenomenon by fusing selected phrases into a new sin-

gle term (e.g. \white house", \Pope John Paul II") and

using it either instead of or in addition to the individual

words [1]. This approach, however, requires that all sen-

tences, whether in documents or queries, be segmented

218

General English

Document
unigram

Document
bigram

a0

a
1

a
2

P(q | q , D)
n-1n

P(q | GE)

P(q | D)

Figure 4: An HMM that models bigram production.

TREC-6 TREC-7

basic HMM 27.1 23.9

w/bigrams 28.1 24.4

improvement +1.0 +0.5

Table 3: Performance gains from adding a bigram state.

into terms (e.g. is \white house secretary" transformed

into \white house secretary" or \white house secretary"?).

We have taken an alternate approach, in which the

words of a query are modeled as always being gener-

ated one at a time, but the probabilities governing this

generation are conditioned on the identity of the pre-

vious word generated. This is accomplished by adding

to our HMM a third, document-dependent bigram state

(see Figure 4). The output distribution of this state6 is

given by

P (qnjDk; qn�1) =

number of times qn�1qn appears in Dk

number of times qn�1 appears in Dk

(11)

where qn is the current word of the query and qn�1 is the

previous word. In the event that a document does not

contain the previous word of the query the computation

backs o� to the two-state model, as the denominator of

the bigram state output probability would be zero.

Generating a word via this state corresponds to the

user's continuing a two-word phrase that was initiated

in the previous word. Since the bigram state output

probabilities are typically one to three orders of magni-

tude greater than those in the unigram states, a docu-

ment containing a bigram that matches the query gains

a big boost in likelihood.

The three-state system has a second free parameter,

a2, in the transition probabilities. We optimized the

6Strictly speaking, the output distribution of an HMM state can-
not be dependent on any of the previous outputs. However the un-

orthodox HMM presented here is equivalent to a strict HMM having
one state per distinct word of the document in place of the the single

bigram state shown in Figure 4.

TREC6 TREC7

basic HMM 27.1 23.9

w/query weights 30.0 25.1

improvement +2.9 +1.2

Table 4: Performance gains query section weighting.

values for a1 and a2 to maximize AveP on the TREC-6

task, arriving at a1 = 0:29; a2 = 0:01. Table 3 shows

the e�ect of using the bigram-state with these transition

values for both the TREC-6 and TREC-7 tasks. The

fair gain, while solid, is only half as big as the unfair

improvement seen on the TREC-6 task. As there are

only two free parameters being tuned, statistical vari-

ance between test sets seems a more likely explanation

for the discrepancy than overtraining.

4.3 Query Section Weighting

Examining the topics from past TREC evaluations, it

was clear that the words in the \Title" section were

more important than those in the remainder of the topic

(although it was unclear whether the \Description" sec-

tion was more or less useful than the \Narrative" sec-

tion). In a more general context, a user may wish to

designate some portions of his query as more important

than others. To exploit this observation, we imagine a

simple model in which a user repeats a word multiple

times in a query to indicate its greater importance. Un-

der this model, the \Title" declaration is taken simply

as shorthand for \repeat these words � times". Apply-

ing these repetitions to Equation 4 yields

P (QjDk is R) =
Y
q2Q

(a0P (qjGE) + a1P (qjDk))
�s(q)

(12)

where �s(q) is the weight (i.e. number of repetitions) for

the section of the query in which q appears.

We optimized the weights to maximize AveP for the

TREC-6 task, which produced values of �title = 5:7,

�desc = 1:2, �narr = 1:9. The gain from applying

these weights to the TREC-6 task is unfairly optimistic,

but Table 4 shows that using these same query section

weights improves AveP by 1.2 on TREC-7 in a fair test.

In an interactive setting, it would be easy to make term

or section weights available to user manipulation.

4.4 Document Priors

In the discussion of Section 2, we made the simplify-

ing assumption that the prior probability of relevance,

P (D is R), is constant for all documents. However, it is

reasonable to think that longer documents may be more

useful in general than short ones, or that articles from

219

TREC6 TREC7

basic HMM 27.1 23.9

w/non-constant prior 27.6 24.0

improvement +0.5 +0.1

Table 5: Performance with non-constant prior.

TREC-6 TREC-7

basic HMM 27.1 23.9

w/blind feedback +3.5 +3.5

w/query weights +2.9 +1.2

w/non-constant prior +0.5 +0.1

w/bigrams +1.0 +0.5

HMM w/all re�nements 33.2 28.0

Table 6: Performance gains from re�nements to the

HMM system.

a refereed journal may be more informative than those

from a supermarket tabloid. With this in mind, we

searched for features that could predict prior relevance

on TREC-6. The most predictive features we found

were source, length, and average word-length. Condi-

tioning the document prior on these features and esti-

mating the marginals on TREC-6 yielded a small gain

for that corpus, but this gain did not carry over to the

fair test set of TREC-7 (see Table 5). Nonetheless, we

believe that using a non-constant prior is a good idea

and have retained this mechanism in our system.

4.5 Additivity of Re�nements

Table 6 summarizes the improvements in AveP due to

the various extensions described in this section. The

�rst row shows AveP for the basic HMM system, the

next four rows show the gain from using any one of

the techniques by itself, and the �nal row shows the

result of using all four techniques together. The overall

improvement (+6.1 for TREC-6, +4.1 for TREC-7) is

roughly 77% of the sum of the individual improvements

(+7.9 for TREC-6, +5.3 for TREC-7), indicating that

the information captured by these techniques are largely

orthogonal to each other.

To understand better the e�ect of unfairly tuning

to TREC-6, we retuned the entire system to optimize

performance on the TREC-7 test. The AveP increased

by only 0.7 to 28.7. For both tasks, then, the improve-

ment in AveP coming from unfairly tuning the param-

eters of these 4 techniques is roughly +5 - +6 AveP,

while the improvement on TREC-7 from a fair appli-

cation of these techniques was +4 AveP. Thus, a more

realistic estimate of our fair performance on TREC-6 is

27:1 + 4 = 31:1 AveP

5 Conclusion

We have presented a novel method for performing in-

formation retrieval using hidden Markov models. This

framework o�ers a rich setting in which to incorpo-

rate a variety of techniques, both new and familiar.

We have experimented with a system that implements

blind feedback, bigram modeling, query weighting, and

document-feature dependent priors. Our o�cial sub-

mission for the ad hoc task of the TREC-7 conference

achieved an AveP of 28.0 and was among the top tier

of systems [23]. Our own, uno�cial test results on the

TREC-6 ad hoc task show an AveP substantially higher

than any of the o�cial results reported in [21].

We believe that this approach holds great promise

beyond its already demonstrated success. The work

we have reported represents BBN Technologies' initial

foray into the �eld of information retrieval. The sys-

tem was conceived, developed, and debugged with only

1.5 people working for eight months. Naturally, there

are many familiar ideas that we were unable to incorpo-

rate into our system due to time and labor constraints.

Among the most glaring examples are an absence of pas-

sage retrieval, explicit synonym modeling, and concept

modeling. We believe that the HMM approach can be

extended to accommodate these and many other ideas

under a uni�ed, well-grounded framework. More work

still needs to be done.

References

[1] J. Allan, J. P. Callan, W. B. Croft, L. Ballestros, D.

Byrd, R. Swan and J. Xu, \INQUERY does battle

with TREC-6". In D. K. Harman, editor, Proceed-

ings of the Sixth Text Retrieval Conference (TREC-

6), NIST Special Publication 500-240.

[2] D. Bikel, S. Miller, R. Schwartz, R. Weischedel,

\Nymble: a high-performance learning name-

�nder." Fifth Conference on Applied Natural Lan-

guage Processing, (published by ACL), pp 194-201

(1997).

[3] W. Byrne, Encoding and Representing Phonemic Se-

quences Using Nonlinear Networks, Ph.D. Disserta-

tion, University of Maryland, College Park, 1993.

[4] W. Cohen and Y. Singer, \Context-sensitive learn-

ing methods for text categorization". In Proceedings

of the 19th Annual International ACM SIGIR con-

ference on Research and Development in Informa-

tion Retrieval, pp. 307-315, (1996).

[5] S. Colbath, \Rough'n'Ready: A meeting recorder

and browser". A research note of the Perceptual

User Interfaces Conference, San Francisco, CA,

November 1998 (1998).

220

[6] A. Dempster, N. Laird and D. Rubin, \Maximum

Likelihood from Incomplete Data via the EM Algo-

rithm", Journal of the Royal Statistical Society (B),

Vol. 39, No. 1, pp. 1-22, 1977.

[7] D. Harman, \Overview of the Fourth Text REtrieval

Conference." In D. K. Harman, editor, Proceedings

of the Sixth Text Retrieval Conference (TREC-6),

NIST Special Publication 500-236, pp. 1-24 (1996).

[8] D. Hiemstra and W. Kraaij, \TREC-7 working

notes: Twenty-One in ad-hoc and CLIR" In D. K.

Harman, editor, Proceedings of the Seventh Text

Retrieval Conference (TREC-7). To appear 1999.

[9] J. Makhoul and R. Schwartz, \State of the art in

continuous speech recognition", Proc. Natl. Acad.

Sci. USA 92, pp 9956-9963 (1995).

[10] J. Makhoul, R. Schwartz, C LaPre, I. Bazzi, \A

script-independent methodology for optical charac-

ter recognition." Pattern Recognition, Vol 31, No.

9, pp. 1285-1294 (1998).

[11] M. E. Maron and K. L. Kuhns, \On relevance,

probabilistic indexing and information retrieval."

Journal of the Associations of Computing Machin-

ery, 7, pp. 216-244 (1960).

[12] J. Ponte and W. B. Croft, \A Language Modeling

Approach to Information Retrieval." In Proceedings

of the 21st Annual International ACM SIGIR con-

ference on Research and Development in Informa-

tion Retrieval, pp. 275-281, (1998).

[13] M. F. Porter, \An Algorithm for Su�x Stripping."

Program, 14(3), pp. 130-137 (1980).

[14] L. Rabiner, \A tutorial on hidden Markov mod-

els and selected applications in speech recognition",

Proc. IEEE 77, pp. 257-286 (1989).

[15] S. E. Robertson, and K. Sparck Jones \Relevance

weighting of search terms." Journal of the ASIS, 27,

pp. 129-146 (1976).

[16] S. E. Robertson, S. Walker, S. Jones, M. M.

Hancock-Beaulieu, M. Gatford, \Okapi at TREC-

3." In D. K. Harman, editor, Proceedings of the

Third Text Retrieval Conference (TREC-3), NIST

Special Publication 500-226 (1995).

[17] J. J. Rocchio, \Relevance feedback in informa-

tion retrieval". In The SMART Retrieval System{

Experiments in Automatic Document Processing,

pp. 313-323, Englewood Cli�s, NJ, 1971. Prentice

Hall, Inc.

[18] R. Schapire, Y. Singer, A. Singhal, \Boosting and

Rocchio Applied to Text Filtering". In Proceedings

of the 21st Annual International ACM SIGIR con-

ference on Research and Development in Informa-

tion Retrieval, pp. 215-223, (1998).

[19] R. Schwartz, T. Imai, F. Kubala, L. Nguyen, J.

Makhoul, \A maximum likelihood model for topic

classi�cation of broadcast news." Proc. Eurospeech

'97, Rhodes, Greece, pp. 1455-1458 (1997).

[20] E. Voorhees and D. Harman, \Overview of the

Sixth Text REtrieval Conference." In D. K. Harman,

editor, Proceedings of the Sixth Text Retrieval Con-

ference (TREC-6), NIST Special Publication 500-

240, pp. 1-24 (1998).

[21] E. Voorhees and D. Harman, \Appendix A: Ad-

hoc Results." In D. K. Harman, editor, Proceed-

ings of the Sixth Text Retrieval Conference (TREC-

6), NIST Special Publication 500-240, Appendix A

(1998).

[22] E. Voorhees and D. Harman, \Overview of the Sev-

enth Text REtrieval Conference." In D. K. Harman,

editor, Proceedings of the Seventh Text Retrieval

Conference (TREC-7). To appear 1999.

[23] E. Voorhees and D. Harman, \Appendix A: Adhoc

Results." In D. K. Harman, editor, Proceedings of

the Seventh Text Retrieval Conference (TREC-7).

To appear 1999.

[24] J. Xu. Personal communication, October, 1998

(1998).

221

