Video Indexing and Retrieval

CMSC828K Kyongil Yoon

Contents

■ Part 1 : Survey

"Multimedia Database Management Systems" Guojun Lu

Chapter 7. Video Indexing and Retrieval

Part 2 : Example

Automatic Video Indexing via Object Motion Analysis Jonathan D. Courtney Texas Instruments

Introduction

Video

- A combination of text, audio, and images with a time dimension

Indexing and retrieval methods

- Metadata-based method
- Text-based method
- Audio-based method
- Content-based method
 - Video : A collection of independent images or frames
 - Video : A sequence of groups of similar frames (shot-based)
- Integrated approach

Shot-Based Video ...

■ Video shot : logical unit or segment

- Same scene
- Single camera motion
- A distinct event or an action
- A single indexable event

■ Query

- Which video?
- What part of video?

Steps

- Segment the video into shots
- Index each shots
- Apply a similarity measurement between queries and video shots Retrieve shots with high similarities

Shot Detections (Segmentation)

Segmentation

- A process of dividing a video sequence into shots

Key issue

- Establishing suitable difference metrics
- Techniques for applying them

Transition

- Camera break
- Dissolve, wipe, fade-in, fade-out

Basic Video Segment Techniques

Sum of pixel-to-pixel differences

Color histogram difference

- To be tolerant with object motion
- $SD_i = \sum_j |H_i(j) H_{i+1}(j)|$ where i : frame number, j : gray level

Modification of color histogram

- $SD_i = \sum_j ((H_i(j) H_{i+1}(j))^2 / H_{i+1}(j))$
- $-\chi^2$ test

Selection of appropriate threshold - Critical

e.g.) The mean of the frame-to-frame difference
+ small tolerance value

Detecting Gradual Change

■ Fade-in, fade-out, dissolve, wipe, ...

Twin-comparison technique

- T_b : Normal camera breaks
 - $T_{s}^{\tilde{s}}$: Potential frames of gradual change
- $\begin{array}{ll} \mbox{ If } T_{\rm b} < \mbox{ diff } & \mbox{ shot boundary} \\ T_{\rm s} < \mbox{ diff } < T_{\rm b} & \mbox{ accumulate differences} \\ & \mbox{ diff } < T_{\rm s} & \mbox{ nothing} \end{array}$
- If the accumulated value is greater than T_b , a gradual change is detected.
- Detection techniques based on wavelet transformation

Very hard to detect!

False Shot Detection

Camera panning, tilting, and zooming

- Motion analysis techniques
- Camera movements
 - Optical flow computed by block matching method

Illumination change

Normalization of color images before carrying out shot detection

1.
$$R_i' = R_i / Sqrt(\Sigma^N R_i^2), G_i' = ..., B_i' = ...$$

2. Chromaticity

1)
$$r_i' = R_i' / (R_i' + G_i' + B_i')$$

- 2) $g_i' = R_i' / (R_i' + G_i' + B_i')$
- 3. A combined histogram for r and g : CHI (Chromaticity histogram image)
- 4. Reduce it to 16x16
- 5. 2D DCT
- 6. Pick only 36 significant DCT values
- 7. Distances are calculated based on these values

Other Shot Detection

Motion removal

- Ideally, frame-to-frame distance should be
 - Close to zero with very little variation within a shot
 - Significantly larger than within-values between shots
- However, within a shot
 - Object motion, camera motion, other changes
 - Filter to remove the effects of camera/object motion
- Based on edge detection
- Advanced cameras
 - Recording extra information such as position, time, orientation, ...

Segmentation of Compressed Video

Based on MPEG compressed video

- DCT coefficients
- Motion information
- E.g. # of bidirectional coded macro blocks in B frame, it is very likely shot boundary occurs around the B frame

Based on VQ compressed video

Video Indexing and Retrieval

Shot detection is preprocessing for indexing

R (representative) frames

- One or more key frames for each shot
- Retrieval is based on these frames

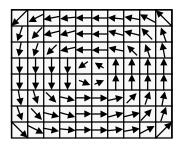
Other information

- Motion, objects, metadata, annotation

Based on R frames

- An r frame captures the main content of the shot
- Image retrieval : color, shape, texture, ...
- Choosing r frames
 - How many?
 - 1. One per shot
 - 2. The number of r frames according to their length
 - 3. One per subshot/scene
 - How to select?
 - 1. First frame of segment
 - 2. An average frame
 - 3. The frame whose histogram is closest to the average histogram
 - 4. Large background + all foregrounds superimposed
 - First frame + frame with large distance

Based on Motion Information


- R frame base ignores temporal or motion information
- Motion information is derived from optical flow or motion vectors

Parameters for indexing

- Content : talking head vs car crash
- Uniformity : smoothness as a function of time
- **Panning :** horizontal camera movement
- Tilting : vertical camera movement

Camera motion

-Pan, tilt, zoom, swing, (horizontal/vertical) shift

Based on Objects

- Content based representation
- If one could find a way to distinguish individual objects throughout he sequence, ...
- In a still image, object segmentation is difficult In a video sequence, we can group pixels that move together into an object.

MPEG-4 object-based coding

- How to represent
- NOT how to segment and detect

Based on Others

Metadata

DVD-SI : DVD service information
Title, video type, directors

Annotation

- 1. Manually
- 2. Associated transcripts or subtitles
- 3. Speech recognition on sound track

Integrated method

Effective Video Representation and Abstraction

- Useful to have effective representation and abstraction tool
- How to show contents in a limited space
- Applications
 - Video browsing
 - Presentation of video results
 - Reduce network bandwidth requirements and delay

■ Then how?

Representation and Abstraction

Topical or subject classification

- News : (local, international, finance, sport, weather)

Motion icon (micon) or video icon

- Easy shot boundary representation
- Operations : browsing, slicing, extraction a subicon

■ Video streamer

- Clipmap
 - A window containing a collection of 3D micons
- Hierarchical video browser

Representation and Abstraction

■ <u>Storyboard</u>

A collection of representative frames

Mosaicking

- An algorithm to combine information from a number of frames

Scene transition graph

- Node : image which represents one or more video shots
- Edge : the content and temporal flow of video

Video skimming

- High-level video characterization, compaction, and abstraction

Automatic Video Indexing via Object Motion Analysis As an Object Tracking Example

Video indexing

- The process of identifying important frames or objects in the video data for efficient playback
- Scene cut detection, camera motion, object motion
- Hierarchical segmentation

Three steps

- Motion segmentation, object tracking, motion Analysis

Events

- Appearance/Disappearance
- Deposit/Removal
- Entrance/Exit
- Motion/Rest

Motion Segmentation

■ Segmented Image C_n

- $C_n = ccomps(T_h \cdot k)$
 - Th : binary image resulting from thresholding $|I_n I_0|$

T_h•k : morphological close operation on T_h

Reference frame I₀

Strong assumptions may fail when

- Sudden lighting
- Gradual lighting
- Change of viewpoint
- Objects in reference frame

Imperfectness of Segmentation

All the possible problems

- True objects will disappear temporarily
- False objects
- Separate objects will temporarily join together
- Single objects will split into multiple regions

Object Tracking

Terminology

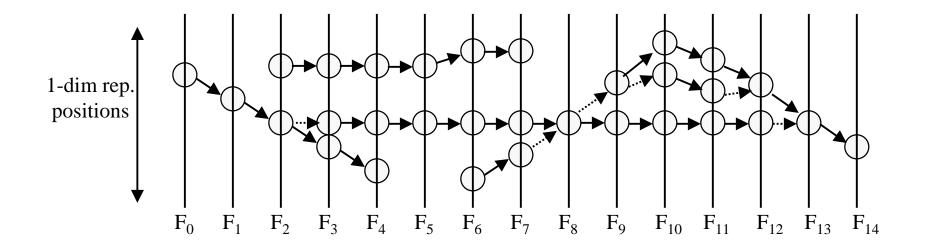
- Sequence ordered set of N frames $S = \{F_0, F_1, \dots, F_{N-I}\}$: F_i is i-th frame
- Clip C = (S, f, s, l) : $F_{p}F_{l}$ first and last valid frame, F_{s} start frame
- Frame F : image I annotated with a timestamp $t, F_n = (I_n, t_n)$
- Image I : r x c array of pixel
- Timestamp records the date and the time

V-object

- Extracted by motion segmentation comparing a frame to a reference frame
- Label, centroid, bounding box, shape mask

$$- V_n = \{ V_n^{p}; p = 1, \dots P \}$$

Object Tracking


Tracking procedure

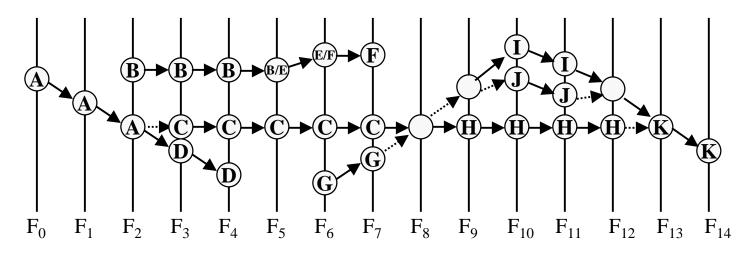
- Iterate (forward) step 1-3 for frames 0, 1, ..., N-2 $\mu_n^{p} = \mu_n^{p} + \nu_n^{p}(t_{n+1} t_n)$
- 1. For each V-object, predict its position in next frame
- 2. For each V-object, determine the V-object in the next frame with centroid nearest to the prediction
- 3. For every pair, estimate forward velocity
- 4. Do 1-3 in backward
- For all frames
- 5. Determine primary links for mutual nearest neighbor
- 6. Determine secondary links from forward step
- 7. Determine secondary links from backward step

Object Tracking

Following graph is produced

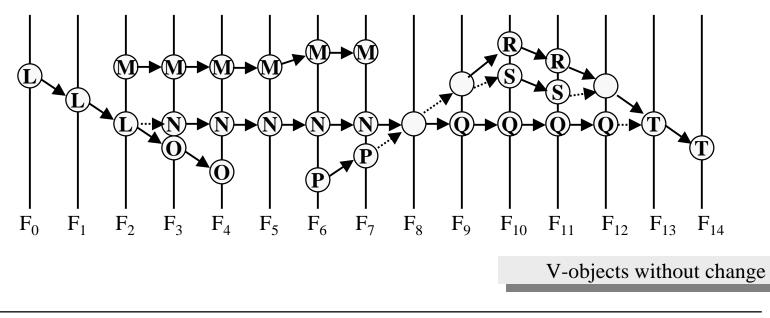
- Node V-objects
- Primary links (mutually nearest)
- Secondary links (others)

Motion Analysis V-object Grouping


Group V-objects with difference levels

- Stem, *M*
- Branch, B
- Trail, L
- Track, K
- Trace, E
- $\blacksquare E \supseteq K \supseteq L \supseteq B \supseteq M$
- Each level implies a feature of the blob

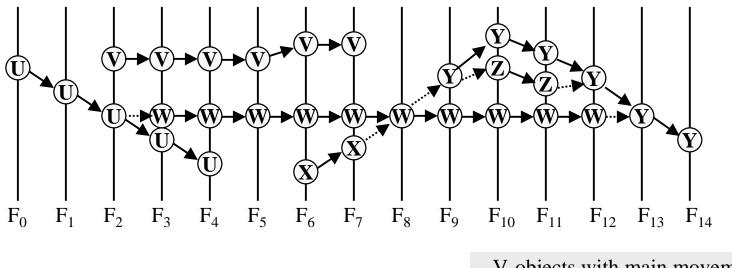
V-object Grouping - Stem


- Maximal size path of two or more V-objects with no secondary links
- $\blacksquare M = \{V_i : i = 1, 2, ..., N_M\}$
 - outdegree(V_i) = 1 for $1 \le i < N_M$
 - indegree(V_i) = 1 for $1 < i \le N_M$
 - either $\mu 1 = \mu 2 = \dots = \mu_{N_M}$ or $\mu 1 \neq \mu 2 \neq \dots \neq \mu_{N_M}$
- Stationary/moving

V-objects with constant/no movement without any change

V-object Grouping - Branch

- Maximal size path containing no secondary links and composed with only one path
- $\blacksquare B = \{V_i : i = 1, 2, ..., N_B\}$
 - outdegree(V_i) = 1 for $1 \le i < N_B$
 - indegree(V_i) = 1 for $1 < i \le N_B$
- Stationary(one stem) / moving(otherwise)

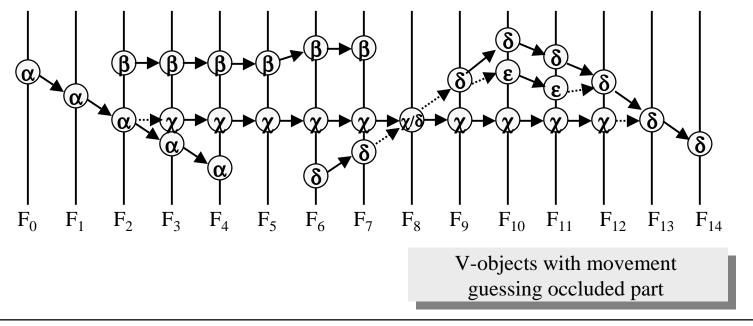


V-object Grouping - Trail

■ *L*

Maximal-size path without secondary links

Stationary/moving/unknown

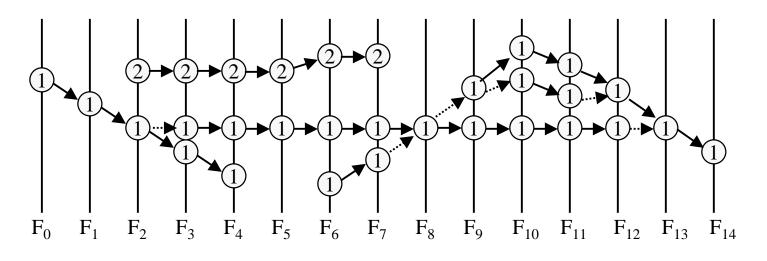


V-objects with main movement

V-object Grouping - Track

•
$$K = \{L_1, G_1, \dots, L_{N_{K-1}}, G_{N_{K-1}}, L_{N_K}\}$$

- L_i : trail


- G_i : connecting dipath with constant velocity through $H = \{V_i^{i}, G_i, V_{i+1}^{i}\}$ where V_i^{i} is the last object of L_i and V_{i+1}^{i} is the first object of L_{i+1}
- Stationary/moving/unknown

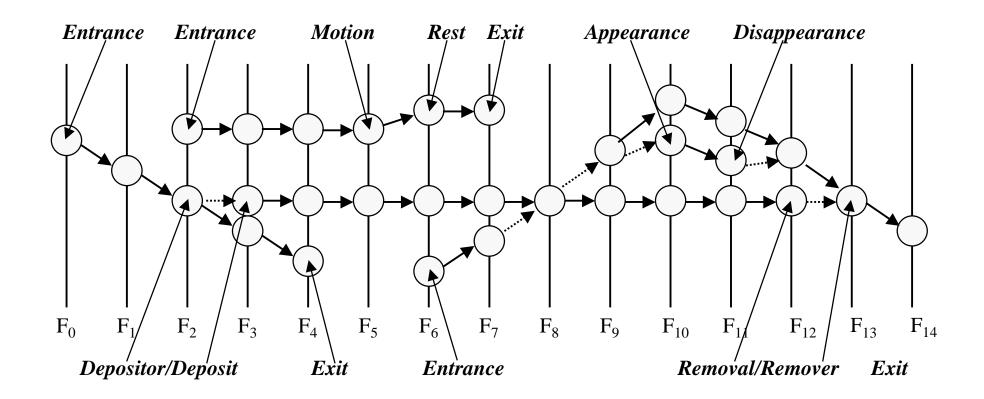
V-object Grouping - Trace

■ *E*

Maximal size connected digraph of V-objects

Group of V-objects overlapped

Events


- Appearance
- Disappearance
- Entrance
- Exit
- Deposit
- Removal
- Motion
- Rest
- (Depositor)
- (Remover)

- an object emerges in the scene
- an object disappears from the scene
- moving object enters the scene
- moving objects exits from the scene
- an inanimate object is added to the scene
- an inanimate object is removed from the scene
- an object at rest begins to move
- a moving object comes to a stop
- a moving object adds an inanimate object to the scene
- a moving object removes an inanimate object from the scene

Annotating V-objects

	V-object motion state		
	Moving	Stationary	Unknown
Appearance	1. Head of track	1. Head of track	
	2. Indegree(V) > 0	2. Indegree(V) = 0	
Disappearance	1. Tail of track	1. Tail of track	
	2. Outdegree(V) > 0	2. Outdegree(V) = 0	
Entrance	1. Head of track		1. Head of track
	2. Indegree(V) = 0		2. Indegree(V) = 0
Exit	1. Tail of track		1. Tail of track
	2. Outdegree(V) = 0		2. Outdegree(V) = 0
Deposit		1. Head of track	
		2. Indegree(V) = 1	
Removal		1. Tail of track	
		2. Outdegree(V) = 1	
(Depositor)	Adjacent to V-object with deposit tag		
(Remover)	Adjacent from V-object with removal tag		
Motion	1. Tail of stationary stem		
	2. Head of moving stem		
Rest	1. Tail of moving stem		
	2. Head of stationary stem		

Example of Annotation

Query

■ Y = (*C*, *T*, *V*, *R*, *E*)

- C: a video clip
- $T = (t_i, t_j)$: a time interval within the clip
- V: V-object in the clip
- *R* : a spatial region in the field of view
- E: an object motion event

Processing a query

- Keeps truncating domain with query parameters

Experimental Result

■ 3 videos, 900 frames, 18 objects, 44 events

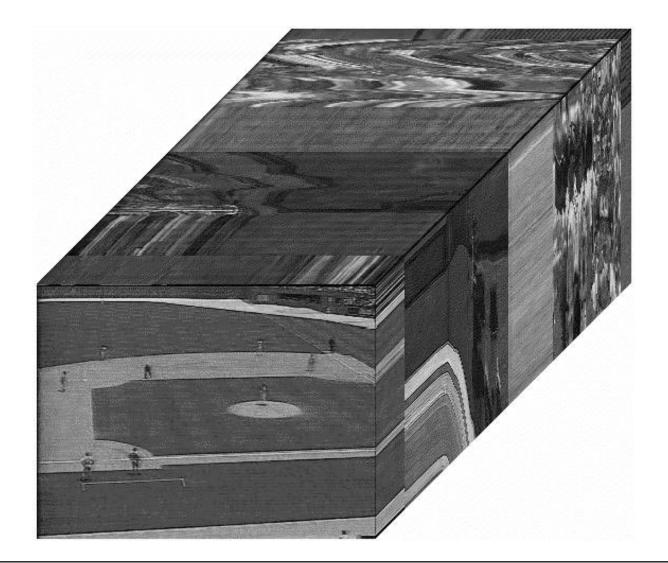
Video 1	Video 2	Video 3
Inventory or Security monitoring 300 frs, 10fr/sec 5 objects, 10 events entrance/exit, deposit/removal	retail customer monitoring 285 frames, 10 fr/sec 4 objects, 14 events all eight events 3 foreground objects in ref. frame Most complicated	parking lot traffic monitoring 315 frames, 3fr/sec 9 objects, 20 events most noisy

- 1 false negative, 10 false positive
- Conservative

Errors come from

- Noise in the sequence
- Assumption of constant trajectories of occluded objects
- No means to track objects through occlusion by fixed scene objects

Mosaicking



Story board, Video Multiplexing

- Show 20 minutes of video in 6 seconds
- Loop all shots as thumbnails at same time
- Let the user focus on the interesting shots

Micon

