
Parallel and Distributed
Information Retrieval

Anil Kumar Akurathi

Department of Computer Science

University of Maryland

6/16/1999 akanil@cs.umd.edu 2

Outline

❚ Why Parallel and Distributed IR systems are needed?

❚ Parallel generation of Inverted Files for Distributed
text collections

❚ Distributed Algorithms to Build Inverted Files

❚ Performance Evaluation of a Distributed Architecture

6/16/1999 akanil@cs.umd.edu 3

Why Parallel and Distributed IR?

❚ The amount of information is increasing very rapidly
with the increase of the size of the Internet

❚ Searching and indexing costs increase with the size
of the text collection

❚ More and more powerful machines are expensive

❚ Parallel and Distributed systems provide cheap
alternatives with comparable performance

6/16/1999 akanil@cs.umd.edu 4

Advantages of distributed systems

❚ Provide multiple users with concurrent, efficient
access to multiple collections located on remote sites

❚ Use the resources more efficiently by spreading the
work across a network

❚ Easily extendable to include more sites

❚ Can be created from the products already available

6/16/1999 akanil@cs.umd.edu 5

Parallel generation of Inverted Files

❚ Strongly connected network of processors

❚ One central coordinator to distribute queries and to
combine results, if necessary

❚ Scalable Algo for parallel computation of inverted
files for large text collections

❚ Average running cost of O(t/p), where
❙ t is the size of the whole text collection

❙ p is the number of available processors

6/16/1999 akanil@cs.umd.edu 6

Distribution of Text collection

❚ Documents in the collection are evenly distributed in
the network

❚ Each processor roughly holds

❙ b - subcollection size at each processor

❙ t - total text size

❙ p - total number of processors

p

t
b =

6/16/1999 akanil@cs.umd.edu 7

Inverted Files

❚ An Inverted list structure has
❙ A list of all distinct words in the text calledvocabulary,

sorted in lexicographical order

❙ vocabulary usually fits in the main memory

❙ for each wordw in vocabulary, aninverted listof
documents in which the wordw occurs

❙ Any portion of the list that needs to be stored or exchanged
through the network iscompressedto keep the disk
accesses and network overhead low

6/16/1999 akanil@cs.umd.edu 8

Distribution of Inverted Files

❚ Local index organization
❙ each machine has its own local inverted file

❙ very easy to maintain as there is no interaction

❙ each query should be sent to all machines

❚ Global index organization
❙ global inverted file for the whole collection

❙ For simplicity, index distributed in lexicographic order
such that all hold roughly equal portions

❙ Queries are sent to only specific machines

6/16/1999 akanil@cs.umd.edu 9

Global Index Organization

❚ Even in the local index organization we need to
provide the global occurrence information

❚ Hence computation of the global index is
unavoidable

❚ Also, global index organization outperforms local
index organization on TREC collection queries

6/16/1999 akanil@cs.umd.edu 10

Phases in the algorithm

❚ Phase 1: Local Inverted Files
❙ each processor builds an inverted file for local text

❚ Phase 2: Global Vocabulary

❙ global vocabulary and the portion of the global inverted
file to be held by each is determined

❚ Phase 3: Global Distributed Inverted File
❙ portions of the local inverted files are exchanged to

generate the global inverted file

6/16/1999 akanil@cs.umd.edu 11

Phase 1: Local Inverted Files

❚ Each processor readsb bytes of data from disk and
builds the inverted file
❙ words are inserted in a hash table whose entries point to

the inverted lists for each word

❙ the inverted for a word w has pairs (d, f) where

❘ d - document in which w occurs

❘ f - frequency of occurrence

❙ inverted lists are compressed but hash table is kept
uncompressed and unsorted

6/16/1999 akanil@cs.umd.edu 12

Cost for phase 1

❚ where
❙ ts1, ts2: average disk access time and cpu time per byte

(in sec), these can be derived experimentally

❚ linearity assumptions are valid for disk access, for
hash table with constant access and for Golomb
compression algorithm

2
11

tsb
tsbt

×
+×=

6/16/1999 akanil@cs.umd.edu 13

Phase 2: Global Vocabulary

❚ Processors merge their local vocabularies
❙ first, odd numbered processors transfer all their local

vocabulary to even numbered processors

❙ This pairing process is applied recursively until processor
0 has the global vocabulary (logp steps)

❙ The size v of the vocabulary can be computed as

❘ where 0 <β < 1 and K is a constant

)(ββ tOKtv ==

6/16/1999 akanil@cs.umd.edu 14

Global Vocabulary computation

Proc0 Proc2 Proc3Proc1 Proc4 Proc5 Proc6

Proc0 Proc2 Proc4

Proc0 Proc4

Proc0

Global Vocabulary Computation

6/16/1999 akanil@cs.umd.edu 15

Cost for Phase 2

❚ where
❙ Sw: average size in bytes of words

❙ ts3: average time of network per byte (in sec)

❙ ts4: average time of cpu per byte (in sec)

)()2(43
1)(log

02
2 tstsbSKt

p

i
i

w +×= ÿ −
=

β

6/16/1999 akanil@cs.umd.edu 16

Phase 3: Global Distributed Inverted File

❚ Processor 0 sorts the global vocabulary and computes
the lexicographical boundaries ofp equal sized
stripes of global inverted file

❚ This information is broadcast to all processors

❚ Each processor sorts its local vocabulary

❚ step-by-step all-to-all communication procedure is
followed to exchange the lists

6/16/1999 akanil@cs.umd.edu 17

Cost for Phase 3

❘ where
• vl: size (in English words) of the local vocabulary

• vg: size of the global vocabulary

• Kq: proportionality constant for quicksort

• Kc: compression factor

• Ki: ratio of inverted list size and text size

• ts5: average cpu time per English word (in sec)

• ts6, ts7: average network and cpu time per byte (in sec)

)()1(
log
log

76

5

53

2 tstsKp
tsvvK

tsvvKt

p
biK

c

llq

ggq

+××−
+××

+××=

6/16/1999 akanil@cs.umd.edu 18

Average total cost

❙ where I is the computation internal costs and C is the
communication costs

❙ by observing that b >> tβ for common English texts, the
average total cost is estimated as

)3()()log(
)2()()(
)1()()(

PhaseCbOIttO
PhaseCtOItO
PhaseCbOIbO

+
++

++

ββ
ββ

COIOCbOIbO
p
t

p
t)()()()(+=+

6/16/1999 akanil@cs.umd.edu 19

Distributed Algorithms

❚ Same type of configuration but for a much larger
collection

❚ Total distributed main memory is considerably
smaller than the inverted file to be generated

❚ TREC-7 collection of 100 gigabytes indexed in 8
hours on 8 processors with 16 MB RAM

❚ Algorithms for inverted files that do not need to be
updated incrementally

6/16/1999 akanil@cs.umd.edu 20

Design Decisions

❚ Index terms are ordered lexicographically

❚ The pairs [dj, fi,j] for each index term ki are sorted in
the decreasing order of fi,j

❙ dj - jth document

❙ fi,j - frequency of ith index term ki in dj

❚ The above sorting helps in retrieving less number of
documents from disk when there is a threshold for fi,j

6/16/1999 akanil@cs.umd.edu 21

A sequential disk based algorithm

❚ In phase a, all documents are read from disk and
processed for index terms to create the perfect hashed
vocabulary

❚ In phase b, all documents are parsed again to get the
[dj, fi,j] pairs (second access can be avoided if the
vocabulary is kept in memory)

❚ disk-based multi-way merge is done to combine the
partial inverted lists

6/16/1999 akanil@cs.umd.edu 22

Local buffer and Local lists - LL

❚ This is similar to what we have discussed before
❙ Phase1: each processor builds its own local inverted list

❙ Phase2: the global vocabulary and portion of the global
inverted file for each processor are determined

❙ Phase3: processors exchange the inverted lists in an all-to-
all communication procedure

6/16/1999 akanil@cs.umd.edu 23

LL algorithm merging procedures

❚ In phase 1, when the main memory is full, the
inverted list is written to disk.

❚ If there are R such runs, at the end of the phase, an R-
way merge is performed

❚ Similarly, in phase 3, a p-way merge is performed
after receiving the portions of the inverted lists from
other processors

6/16/1999 akanil@cs.umd.edu 24

Local buffer and Remote lists - LR

❚ This assumes that the information on global
vocabulary is available early on

❚ To avoid the R-way merging done in LL, the portions
of the inverted lists are directly sent to the other
processors (now a pR-way merging is needed)

❚ This avoids the disk I/O associated with R-way
merging procedure

6/16/1999 akanil@cs.umd.edu 25

Remote buffer and Remote lists - RR

❚ An improvement over LR is to assemble the triplets
in small messages early on and to send them to avoid
storage at local buffer

❚ These messages need to be large enough to reduce
the network overheads

❚ Transmission through network and reading of local
documents from disk can be overlapped
❙ Very little cost associated with network transmission

6/16/1999 akanil@cs.umd.edu 26

Performance evaluation of a Distributed
Architecture

❚
Client 1

Client 2

Client N

Connection
Server

Network Network

Inquery
Server M

Inquery
Server 2

Inquery
Server 1

Merge

Distributed Information Retrieval System

6/16/1999 akanil@cs.umd.edu 27

Architecture

❚ Inqueryserver, a full-text information retrieval model
is used

❚ Clients connect to aconnectionserver, a central
administration broker which intern connects to
Inquery servers

❚ Clients provide the user interface to the retrieval
system

6/16/1999 akanil@cs.umd.edu 28

IR commands

❚ Query commands
❙ set of words or phrases and a set of collection identifiers

❙ response includes document identifiers with estimates

❚ Summary commands
❙ set of document identifiers and their collection identifiers

❙ response includes title and first few sentences of the document

❚ Document commands
❙ a document and its collection identifier

❙ response includes the complete text of the document

6/16/1999 akanil@cs.umd.edu 29

Connection Server

❚ Forwards the clients commands to appropriate
Inquery servers

❚ Maintains the intermediate responses from the
servers until it receives responses from all

❚ Merges the responses from the servers
❙ It is assumed that the relative rankings between documents

in independent collections are comparable

6/16/1999 akanil@cs.umd.edu 30

Simulation Model

❚ User configures a simulation by defining the
architecture using a simple command language

❚ CPU, disk and network resources used for each
operation are measured

❚ Utilization percentage of the connection server and
Inquery servers is measured

❚ Evaluation time of a query is computed by adding the
evaluation times of individual terms in the query

6/16/1999 akanil@cs.umd.edu 31

Evaluation times

❚ Document retrieval time
❙ A constant (0.31 sec) measured after calculating the

average retrieval time for 2000 random documents

❚ Connection server time
❙ time to access the connection server (0.1 sec)

❙ time to merge the results (17.9 msec for 1000 values)

❚ Network time
❙ sender overhead, receiver overhead and network latency

6/16/1999 akanil@cs.umd.edu 32

Simulation parameters

❚ Number of Clients/Inquery servers (C/IS)

❚ Terms per Query (TPQ)

❚ Distribution of terms in queries (QTF)

❚ Number of Documents that match queries (AR)

❚ Think Time (TT)

❚ Document Retrieval / Summary Information
(DR/SO)

6/16/1999 akanil@cs.umd.edu 33

Transaction sequence

❚ Evaluate a query

❚ Obtain summary information of top ranking
documents

❚ think

❚ retrieve documents

❚ think
❙ Only natural language queries are modeled

❙ structured query operations such as phrase and proximity
operators are not modeled

6/16/1999 akanil@cs.umd.edu 34

Experiments and results

❚ Two kinds of experiments
❙ Equally distributing a single database among the servers

❙ Each server maintains a different database and the clients
broadcast to a subset of servers

❚ Both small and large queries are used

❚ Performance deteriorates ifconnection serveror
Inquery serversare over utilized

❚ Architectures with two or four connection servers to
eliminate the bottleneck are also used

6/16/1999 akanil@cs.umd.edu 35

Distributing a single text collection

❚ Exploits parallelism by operating simultaneously

❚ Each client needs to connect to all servers

❚ Small queries (TPQ = 2)
❙ As the number of clients increases, average transaction

time increases

❙ Going from 1 to 8 servers, improves the performance since
the size of the database decreases

❙ For more than 8 servers, performance degrades as the
connection server becomes over utilized (size of the
incoming queue at connection server also increases)

6/16/1999 akanil@cs.umd.edu 36

Single text collection, cont.

❚ Large Queries (TPQ = 27)
❙ Performance degrades rapidly as the number of clients

increases since the system places greater demands on the
Inquery servers

❙ For more number of Inquery servers, extremely high
utilization of the connection server and Inquery servers
causes the degradation

❙ Contrast to small queries where Inquery server is highly
utilized only for single Inquery server

6/16/1999 akanil@cs.umd.edu 37

Multiple text collections

❚ In the simulation, each client searches half of the
available collections on the average

❚ Hence, work load increases both as a function of the
number of Inquery servers and the number of clients

❚ Small queries (TPQ = 2)
❙ connection server utilization increases with the number of

clients causing a degrade in the performance

❙ Inquery server utilization decreases as the number of
Inquery servers increases (size of the incoming queue at
connection server also increases)

6/16/1999 akanil@cs.umd.edu 38

Multiple text collections, cont.

❚ Large Queries (TPQ = 27)
❙ Performance of the system does not scale for large queries

❙ Inquery servers cause a bottleneck as the number of
Inquery servers increases

❙ Connection server remains idle for most of the time since
query evaluation takes most of the time

6/16/1999 akanil@cs.umd.edu 39

Multiple connection servers

❚ Additional connection servers reduce the average
utilization of a connection server and increase the
performance for small queries

❚ For 2 connection servers, speadup of 1.94 over single
connection server using 128 Inquery servers and 256
clients

❚ For 4 connection servers, system scales very well for
large configurations using small queries

6/16/1999 akanil@cs.umd.edu 40

Conclusions

❚ The architecture provides scalable performance for
small queries

❚ Over utilization of connection server or Inquery
servers degrades the performance

❚ For large queries and extremely high workloads,
Inquery servers do not provide good response times

❚ Adding more connection servers gives good
performance for small queries

6/16/1999 akanil@cs.umd.edu 41

References

❚ B.Ribeiro-Neto, E.S.Moura, M.S.Neubert and N.Ziviani. Efficient
Distributed Algorithms to Build Inverted Files. In SIGIR'99, Berkley, USA

❚ B.Ribeiro-Neto, J.P.Kitajima, G.Navarro, C.Santana and N.Ziviani.
Parallel generation of inverted files for distributed text collections. In Proc.
of Int. Conf. of the Chilean Society of Computer Science, (SCCC'98)
pages 149-15, Antofagasta, Chile, 1998

❚ B.Cahoon and K.S.Mckinley, "Performance Evaluation of a Distributed
Architecture for Information Retrieval," ACM SIGIR, Switzerland, Aug.,
1996

