Efficient Distributed Algorithms
to Build Inverted Files

Abstract

We present three distinct distributed disk-based algorithms to build global compressed
inverted files for very large text collections. The distributed environment we use is a high
bandwidth network of workstations with a shared-nothing memory organization. The text
collection is assumed to be evenly distributed among the disks of the various workstations.
Our algorithms consider that the total distributed main memory is considerable smaller
than the inverted file to be generated. Compression is used to save memory and disk
space and to save time for moving data in/out disk and across the network. We analyze
our algorithms and discuss the tradeoffs among them. For practical purposes the average
running time of the algorithms is O(c), where ¢ is the size of the local document collection
at each machine. Using 8 processors and 16 megabytes of RAM available in each processor,
the advanced variants of our algorithms are able to invert a 100 gigabytes collection (the
size of the very large TREC-T7 collection) in roughly 12 hours. Using 16 processors this
time drops to roughly 6 hours.

1 Introduction

The potential large size of a full text collection demands specialized indexing techniques for
efficient retrieval. Some examples of such indexes are suffix arrays, inverted files, and signature
files. Each of them have their own strong and weak points. However, inverted files have been
traditionally the most popular indexing technique used along the years. Inverted files are
useful because their searching strategy is based mostly on the vocabulary which usually fits
in main memory. Further, inverted files are simple to update and perform well when the
pattern to be searched for is formed by conjunctions and disjunctions of simple words, a
common type of query in IR systems and in the Web.

Despite their simple structure, the task of building inverted files for very large text col-
lections such as the whole Web is costly. Therefore, faster indexing algorithms are always
desirable and the use of parallel or distributed hardware for generating the index is an obvi-
ous alternative. In this regard, as hardware platform we consider a network of workstations
because it presents performance comparable to that of a typical parallel machine but is more
cost effective [1, 4].

In [11], a distributed memory-based algorithm for generation of compressed inverted files
is discussed. This algorithm works only for text collections that fit in the distributed main
memory. In here, we focus our study on workstations whose main memory is considerably
smaller than the inverted file to be generated. The reason is that with the actual rate of
growth of modern digital libraries (particularly the Web), inversion models heavily dependent
on relatively large memories will eventually become unusable. Further, we consider that the
inverted files to be generated are compressed. This allows fast index generation with low



space consumption [7, 13] which is important in a distributed environment where data has to
be moved across the network.

In a distributed environment, a clear option for generating the index is to partition the
document collection among the various machines and to generate a local inverted file at each
machine. However, for purpose of query processing, an organization based on local inverted
files is consistently outperformed by a distributed global inverted file partitioned among the
various machines [10]. In a global inverted file organization, incoming queries have to be
submitted to the machines which include lists associated with the query terms only. As a
result, higher concurrency is achieved which allows accelerating the query processing task by
a factor which can go up to 10 for short Web-like queries [3, 10]. Thus, generation of global
inverted files for distributed collections is a problem of practical interest.

In this paper we discuss new distributed algorithms for building global inverted files for
large collections distributed across a high-bandwidth network of workstations. We adopt
as building block a well known sequential disk-based algorithm for generating compressed
inverted files described in [13]. That algorithm is modified to generate frequency-sorted
inverted lists because these allow faster ranking [8, 9].

We discuss how to transform the sequential algorithm in [13] into a distributed one. We
show that three distinct variations are possible which we call LL, LR, and RR. Through
experimentation and analysis, we discuss the performance of these three algorithms and the
tradeoffs among them. The LL algorithm is based on the simple idea of computing first
the local inverted files at each machine (using a sequential algorithm) and merging them in
a subsequent phase. The LR and RR algorithms are more sophisticated and also superior.
In fact, they present an efficiency (the ratio between speedup and the number of processors)
close to 1, whenever the network bandwidth is comparable to the disk bandwidth — a tradeoff
which is in accordance with modern switching and disk technologies. Further, we argue that
the LR algorithm is preferrable in most practical situations which are likely to occur nowadays
because, in those situations, it presents performance comparable to that of the RR algorithm
but is simpler to implement.

This paper is organized as follows. In Section 2 we introduce the environment of our
distributed text collection and the terminology we use throughout the paper. In Section 3 we
discuss three design decisions for distributed inverted files: numbering of index terms accord-
ing to a lexicographical ordering, frequency-based sorting of inverted lists, and compressing
the inverted lists. In Section 4 we detail a sequential disk-based algorithm for generating
inverted files which we use as a building block for our distributed algorithms. In Section 5
we present and analyze our three distributed algorithms named LL, LR, and RR. In Section 6
we present experimental and analytical results which show the practical performance of the
proposed algorithms. Finally, in Section 7 we present our conclusions.

2 Distributed Text Collection and Terminology

We consider a high-bandwidth network of workstations with a shared-nothing memory orga-
nization as illustrated in Figure 1. In this network, we assume that the documents of our
collection are distributed among the various machines and stored on their local disks. For
simplicity, throughout this work we assume that each machine holds nearly the same number
of documents. However, all our algorithms are equally suitable for a non-uniform distribution
of the document collection.
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Figure 1: Network of workstations with shared-nothing memory.

A global inverted file is generated for the whole collection. Since such index is quite large
(despite being compressed), it also has to be distributed among the machines in the network.
As done for the document collection, we assume a uniform distribution of the index such that
any two processors hold a portion of the inverted file which is roughly of the same size in

bytes.

Various variables affect the performance of the distributed algorithms for index generation
here discussed. To refer to them, we use the terminology below. All sizes are in bytes while
all times are measured in seconds.
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local memory buffer for storing inverted lists
size of local buffer B

size of local collection at each processor

the jth document

size of local compressed inverted file

size of local temporary compressed inverted file

: frequency of occurrence of k; in d;

the ith index term

number of runs for generating an inverted file

number of processors

time spent at phase 1 of an algorithm

time spent at step a of an algorithm

time to compare two integers

average time (per byte) to compare two strings

average network communication time (per byte)

average time (per byte) for parsing index terms

average time (per byte) for parsing index terms a second time
average disk transfer time (per byte)

average seek time

average time (per byte of compressed file) to compress (or decompress)

: total time spent by an algorithm named X

size of local vocabulary (distinct set of index terms)
number of indexing points (non-distinct) in local collection
total number of words (non-distinct) in local collection
average size (in characters) of an English word

The parameters ¢, f, f, v, z, and w are relative to the local collection at each processor.
To obtain their values, we multiply the respective size by the number p of processors (except



for the vocabulary size v whose value is a non-linear function of the collection size as detailed
in Section 5.1). For instance, ¢ * p is the size (in bytes) of the whole document collection.

The time ¢, to compress the index depends on the size of the source uncompressed file
and on the size of the compressed file. Here, as in [13], we approximate ¢, by a function of
the size of the resultant compressed file only. Such approximation is reasonably accurate for
our purposes.

3 Design Decisions for Distributed Inverted Files

In this section, we briefly review a distributed memory-based inversion algorithm which il-
lustrates some of the tradeoffs involved in the generation of distributed inverted files. These
tradeoffs motivate the adoption of three design decisions which affect our algorithms for dis-
tributed inverted files: numbering of index terms according to a lexicographical ordering,
frequency-based sorting of inverted lists, and compressing the inverted lists.

An inverted file is an indexing structure composed of: (a) a list of all distinct words in the
text which is usually referred to as the vocabulary and (b) for each word in the vocabulary,
an inverted list of the documents in which that word occurs (the frequency of the word in
each of those documents is also normally included). Such indexing structure usually occupies
space which is roughly 40% of the collection size. For small to medium size collections, it is
then possible to generate the whole distributed index in the aggregate memory of the various
machines in the network as done in [11].

The distributed memory-based algorithm proposed in [11] is composed of three phases.
In phase 1, each processor builds an inverted file for its local text. In phase 2, the global
vocabulary and the portion of the global inverted file to be held by each processor are de-
termined. In phase 3, portions of the local inverted files (as determined in phase 2) are
exchanged to generate the global inverted file. Clearly, this algorithm can be modified to
operate as a disk-based algorithm by storing the local inverted files generated in phase 1 on
disk. But then, for successful execution of phase 3, the now disk-resident inverted file must
be traversed sequentially. This requires (a) storing the inverted file on disk in alphabetical
order of its index terms and (b) assigning disk-contiguous slices of the global inverted file to
each processor (for instance, index terms initiated with characters from a to ¢ are assigned to
processor 0). This leads to our first design decision for distributed inverted files.

Decision 1: The index terms which compose our inverted files (both local and
global) will be (a) ordered lexicographically and (b) numbered in increasing order
according to the lexicographical order previously established.

The inverted lists generated in [11] follow the ordering of documents naturally existent
within the collection (which determines the ordering for parsing the documents). In [8,
9], however, it is proposed to sort the inverted lists in the inverted file by the frequency
of occurrence of terms in documents. The motivation is that, in case a vectorial ranking
is adopted (which is the preferable choice nowadays), much more efficient ranking can be
obtained at query processing time. The idea is to filter the inverted list such that only a
portion of it, composed of the documents with higher f; ; frequencies, needs to be retrieved
from disk. Reducing the sizes of the inverted lists retrieved from disk is particularly important
in a distributed environment because it reduces considerably the sizes of the matching lists
which have to be moved across the network at query processing time. This leads to our second
basic decision which is as follows.



Decision 2: The pairs [d;, f; ;] which compose the inverted list for each index term
k; must be sorted according to the decreasing values of the frequencies f; ;.

In [11], compression is used in the inverted lists, both during construction and querying
times. The motivation is that, if compression is used, inverted lists are smaller and can
be moved faster accross the network. Furthermore, this reduction in size improves also the
time spent reading and writing the lists to disk. This leads to our third design decision for
distributed inverted files.

Decision 3: The inverted list for each index term k; will be compressed.

4 A Sequential Disk-Based Algorithm

Disk-based sequential algorithms (i.e., which run in a single processor) for generating com-
pressed inverted files have been studied extensively in the literature [7, 13]. However, the
algorithms usually fail to consider the first two design decisions we just established in the
previous section. To enforce them, we adapt the multiway merging algorithm proposed in [13].

The sequential algorithm we propose is composed of three phases a, b, and ¢. In phase
a, all documents are read sequentially from disk and parsed into index terms. This allows
creating a perfect hashed vocabulary [5] in which the terms are sorted lexicographically and
numbered according to our decision 1. In phase b, all documents are again read sequentially
from disk and again parsed into index terms. Triplets composed of an index term number
k;, a document number d;, and a frequency f; ; are then formed and inserted into a buffer B
in main memory. Whenever this buffer fills (i.e., whenever a run is completed), the partial
inverted lists are sorted in decreasing order of the frequencies f; ; (to fulfill our decision 2),
compressed (to fulfill our decision 3), and stored in a temporary file F. In phase c, a disk-
based multiway merge is done to combine the partial inverted lists into final lists. The details
are shown in Figure 2.

a. (al) read all documents sequentially, parse into index terms and
create perfect hashed vocabulary
(a2) create memory buffer B /* with dynamic allocation */
(a3) R =0 /* initialize number of runs */

b. foreach d; do
begin
(bl) read dj, parse into index terms
(b2) foreach k; € d]‘ do B=B+ [ki,dj,fz”j]
(b3) if 'buffer B is full' then

begin

(b3.1) do quicksort on the triplets /* keys = k;, f;; */
(b3.2) F = compress-write-disk(B)

(b33)B=¢; R=R+1

end

end
c. multiway-disk-merge(F,R)

Figure 2: The sequential (single processor) algorithm.



Apparently, reading and parsing all the documents twice is a bad choice. However, this
is not so. In fact, the expensive portion of this step is the parsing. Since the tasks executed
at the first parsing (building the hashed vocabulary) and the tasks executed at the second
parsing (building the triplets and inserting them into the buffer B) are complimentary and
have to be executed anyway (i.e., even if only a single reading and parsing is done), the
double reading and parsing does not add a great overhead. Further, it allows building a
perfect hashed vocabulary which provides for direct access to any inverted list with no need
to lookup at a vocabulary entry [5]. Thus, once the perfect hash has been built, it is no longer
necessary to keep the vocabulary in memory (all significative memory consumption is now
represented by the buffer B which stores the inverted lists).

Analytical Costs

Our analytical model is based on the discussion in [13]. The sequential algorithm detailed in
Figure 2 is composed of the steps a, b, and c. Let t,, t5, and ¢, be the respective times (in
seconds) for each of these steps.

For the step a, we can write

te = cty +wt, + (1.2 viogv) wstes

which accounts for reading all the documents in the collection, parsing all the words, and
sorting the vocabulary to generate a perfect hash. The constant 1.2 is the proportionality
constant for a well engineered implementation of the quicksort.

For the step b, we can write

ty = ctr—l—wt;,—l— [ *xbl +b2 % /
x x
R (1.2 = log E) tei + /%b3.1%/
£t +1) /#b3.2% )
= ct, +wt, +1.2zlog %tci +f (ty+1t) (1)

which accounts for a second reading of all the documents in the collection and a second
parsing of all words. Each time a run is completed (i.e., each time the buffer area B fills up),
the roughly z/R triplets [k;, d;, f; ;] in the buffer B must be sorted using the term number ;
as primary key and the frequency f; ; as secondary key. This makes the triplets for a given
term k; contiguous and sorts its corresponding inverted list (which is partial at this point) in
decreasing values of f; ;. These lists are then compressed and stored on disk. The compression
scheme we use at this phase is the one described in [9].
For the step ¢, we can write

te = f (}—:ts +t, +tz> + z [logR) tei + f (tr +t,)
which accounts for (1) reading and uncompressing the partial inverted lists generated by the R
runs (from each run, a portion of size b/R is read into memory at a time), (2) R-way merging
them using a heap structure (which requires x log R comparisons), and (3) compressing the
merged lists and writing them back to disk.

The total time tt,.4 for our sequential algorithm is then given by

ttseq =tlg+1tp+1ic (2)



In section 6 we demonstrate that such analytical model is quite accurate and yields predictions
which are very close to the total time measured in a real execution.

5 Distributed Disk-Based Algorithms

In this section, we discuss three distributed disk-based algorithms for generating global in-
verted files.

5.1 LL Algorithm: Local Buffer and Local Lists

The main idea behind our first parallel algorithm is to combine the parallel memory-based

algorithm discussed in Section 3 with the sequential disk-based algorithm discussed in Sec-

tion 4. In this new algorithm, the buffer for storing the [k;, d;, f; ;] triplets is local to each

machine. Also, the inverted lists are initially stored on the local disk at each machine. Thus,

we label this parallel inversion algorithm as the LL algorithm (Local buffer and Local lists)
The LL algorithm works as follows.

e Phase 1: Local Inverted Files. In this phase, each processor builds an inverted file for
its local text and stores it on the local disk.

e Phase 2: Global Vocabulary. In this phase, the global vocabulary and the portion of the
global inverted file to be held by each processor are determined. For this, the processors
are paired as illustrated in Figure 3. At the end, processor py results with the global
vocabulary.

KR AN

Figure 3: Global vocabulary computation with 7 processors.

e Phase 3: Global Distributed Inverted File. In this phase, portions of the local inverted
files (as determined in phase 2) are exchanged to generate the global inverted file. For
this, an all-to-all communication procedure [12] is used. The number of rounds of
processor pairings required is p — 1. Each portion received by a processor p; (from every
other processor p;) is stored on disk as a separate run. As a result, each processor ends
up with p separate runs on disk. At the end, a p-way merging on disk is executed at
each processor to generate the final inverted lists which compose the global inverted file.
The details are as follows.

pair each processor p; with every other processor p;
foreach p; within [p;, p;] do
begin
(3.1) from the local disk of p;, read the inverted lists for p;



(3.2) send the inverted lists read to p;

(3.3) receive remote inverted lists from p;

(3.4) store inverted lists just received on a disk file F
end
(3.5) multiway-disk-merge(F',p)

Analytical Costs

The LL algorithm is composed of the phases 1, 2, and 3. Let ¢1, to, and t3 be the time spent
in each of these phases, respectively. The analytical costs (in time) are as follows.

The phase 1 is exactly the sequential algorithm discussed in Section 4. Thus, the time #;
is equal to the time #t,., detailed in Eq. 2 i.e.,

t = ttseq

The phase 2 takes log, p steps to be completed (see Figure 3). Each step lasts for the
time to send the accumulated vocabulary from the higher numbered processor to the lower
numbered one (in each pair). This accumulated vocabulary is roughly of the same size for
any pair of processors (and doubles in size each time we move up in the computation tree of
Figure 3). At the end, the vocabulary is broadcast to all other processors (by processor pg).

The size v in English words of the vocabulary (for a text of size ¢) can be computed as

v=Kcd?

where 0 < # < 1 and K is a constant [6, 2]. Thus, the time ¢ spent at phase 2 can be
approximated by

(logy p)—1 .
to = z 2 v | wy (t + tes) + K(pe)® (ws +4) ty,
=0

= (p—1) v ws (tn +1tcs) + U(p)ﬂ (ws +4)

where w; is the average size in bytes of English words and can be taken roughly as 5. Further,
to illustrate, the values of K and § for the disk 1 of the TREC collection are roughly K = 4.8
and # = 0.56 [2].

The second factor in the expression for ¢ accounts for the broadcast of the global vocab-
ulary to all the other processors. The collection size considered in this case is that of the
global collection and is given by p * c¢. Besides the terms of the vocabulary, an integer of size
4 is also transmitted. This integer is the new number associated to each term according to a
lexicographical ordering of the global vocabulary.

The time t3 for phase 3 is as follows.

ts = (p—1)2<t+ /%31 +34x%/

p—1)2=t,+ /*3.2+33x%/

hSE RS SN

f (% ts+tr+tz>+ z logp] tei+ f (tr+1,) /#3.5%/



5.2 LR Algorithm: Local Buffer and Remote Lists

In the LL algorithm, when the memory buffer B fills the partial inverted lists are stored
on a local disk. As a result, those inverted lists have to merged locally through an R-way
merging procedure (at the end of phase 1). Later on, at the end of phase 3, a second multiway
merging procedure is executed (this time a p-way merging) to merge the lists received from
other processors. The first one of these two multiway merging procedures can be avoided
entirely if we store the partial inverted lists at a remote disk (instead of at a local disk). This
is the main idea behind the LR algorithm which we now discuss.

The LR parallel algorithm uses a local memory buffer B as before but sends the partial
inverted lists (at the time the buffer B fills) to other processors for storage at remote disks.
This means that information on the global vocabulary must be available early on (because a
processor p; needs to know the destination of each inverted list to be sent out). As a result,
the LR algorithm is in Figure 4.

a. (al) each processor reads its local documents sequentially;
each processor creates a perfect hashed vocabulary
(a2) B=10; R =0 /*initialize B and R */
b. (bl) compute global vocabulary in pg which renumbers all index terms
(b2) po broadcasts global vocabulary to all processors
c. foreach d; do /* all processors in parallel */
begin (c1) read d;, parse into index terms
(C2) foreach k; € dj do B=B + [ki,dj,fi’j]
(c3) if 'buffer B is full’ then
begin
(c3.1) do quicksort on the triplets /* keys = k;, fi; */
(c3.2) pair each processor p; with every other processor p;
foreach p; in a pair [p;,p;] do
begin let B;[j] be portion of B in p; destined to p;.
(c3.2.1) CB;[j] = compress(B;[j])
(c3.2.2) send-to(p;, C'B;[j])
(c3.2.3) receive-from(p;, C'B;[i])
(c3.2.4) F =F + write-disk(C'B;[i])

end

end

end
d. multiway-disk-merge(F,p*R)

Figure 4: The LR algorithm.

Analytical Costs

The total execution time ttrr of the LR algorithm can be estimated as follows.

ttrr = cty +wtp + (1.2 viogv) wstes + [xax/
(0= 1) v wy (tn +tes) +0(p)° (wy+4) ta] + /5D
ety + wi, + 1.2¢ log %tci-i- Jxcl +c2+c31%/



.f’ (tz+tr)+|:21%1f’tn:|+ /*63.2*/

! (% ts+tr+tz> + z [logpR| tei+ f (& +1t,) [/*xdx/ (3)
We observe that the expression for tt7,g is similar to the expression for t¢,., in Eq. 2. The main
differences are (1) the terms between square brackets in the second and fourth lines of Eq. 3
(corresponding to the vocabulary computation and the exchange of inverted lists) and (2) the
pR-way merging (instead of an R-way merging) in the last line of Eq. 2. Since the vocabulary
computation is very fast [11] and the difference in time between an R-way and a pR-way
merging is usually small, the difference in time between the sequential and the LR algorithm
(which works with a text p times larger) is fundamentally the term [2 % f t, * (p — 1)/p).
Thus, with a fast enough network, the LR algorithm presents an efficiency (ratio between
speedup and number of processors) which is close to 1.

5.3 RR Algorithm: Remote Buffer and Remote Lists

The LR algorithm stores the triplets [k;, d;, f; ;] in a local buffer B, assembles partial inverted
lists in this buffer, and then sends these lists out. A potential improvement is to collect
the triplets in messages early on and send these messages out very soon to avoid storage at
the local buffer B. By doing so, the buffer B is assembled remotely. A distinct message
for every other remote processor p; is assembled separately. These messages should be large
enought to avoid penalties due to excessive network overhead. Through proper programming
of two threads (one for disk access and other for network access), it is possible to overlap the
transmission through the network with the sequential reading of local documents from disk.
This implies that transmition of the inverted lists through the network becomes almost free.

In the RR algorithm, the buffer B is remote and the partial inverted lists are stored on
remote disks. The algorithm is a slight variation of the LR algorithm and is not detailed here.

Analytical Costs
The total execution time ttgg of the RR algorithm can be estimated as follows.

ttrr = ctp +wtp + (1.2 viogv) wetes +
[(p—1) v wy (tn + tes) +0(p)° (ws +4) o] +

! X !
cty +wt, + 1.2z log Etd +f (t+t)+
r (R
f (3 ts + tr +tz) + 2 [log R] te; + f (t, +t,)

which, except for the vocabulary computation accounted for in the second line above, is the
expression for tts.,. Since the vocabulary computation accounts for less than 2% of the total
computation time, we can say that the RR algorithm is as fast as the sequential algorithm
(while inverting a global collection which is p times larger)!

The main disadvantage of the RR algorithm is that it requires a far more complex im-
plementation. Further, since the triplets are sent out very soon, good compression of the
inverted lists at this point is not possible which implies that network traffic is higher.
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6 Results

In this section we discuss experimental and analytical results for our distributed disk-based
algorithms. Unless explicitly told otherwise, the parameters we consider in our experiments
and analysis are as follows.

b | 48 Mbytes || ¢, | 0.769us/byte
¢ | 8 Gbytes t;, 2.82us/byte
f | 0lxc t, | 12.2us/byte
fl1axf ty | 11ms

I | z/v t, | 4.88us/byte
p |8 v 4.8¢0-56

te; | 88ns z | w/2

tes | 61ns w | ¢/(ws+1)

t, | 10us ws | O

Thus, we assume a local collection size (per processor) of 8 Gbytes and a local buffer area of 48
Mbytes (per processor). The disk transfer time ¢, corresponds to a transfer rate of 8.2 Mbytes
per second which is typical nowadays. The network communication time %, corresponds to
a net bandwidth of 80 Mbits per second as observed for an ATM switch operating at a raw
bandwidth of 155 Mbits per second. The standard number p of processors in our analysis is
8 which, considering PC hardware, can be assembled at relatively low cost.

|~ Analytic
——Red

0

PEFTSEELFIFEF TSP

Local Collection Size (Mbytes per Processor)

Figure 5: Analytical and experimental total execution time for our sequential disk-based
algorithm considering varying collection sizes.

We implemented the sequential algorithm described in Section 4 and ran it for distinct
collection sizes with the purpose of validating our analysis of that algorithm. Figure 5 illus-
trates the results for collection sizes ranging from 128 Mbytes to 2 Gbytes. We observe that
the analytical model provides a good prediction for the overall execution time. The small dif-
ference in the graph is due to operating system overhead which is not accounted for. We also
compared the experimental and predicted time for each of the factors in the expression for
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ttseq (Eq. (2)) and again observed a pretty good match. Therefore, Eq. (2) allows analyzing
the behavior of the sequential algorithm in generic situations, as we now do.
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Figure 6: Network traffic among 8 processors considering a local collection of size 96 Mbytes.

Regarding the LL, LR, and RR distributed algorithms, we notice that their total execution
times include factors related to disk reading/writing, parsing, sorting, comparing, compress-
ing, multiway merging, and network shipping. With the exception of network shipping (i.e.,
moving bytes across the network), all these factors are also present in the sequential algorithm
and have been confirmed experimentally.

With regard to network shipping, the factor ¢, is as measured. Further, we observe that
we have assumed uniformity of traffic among the various pairs of processors. To validate this
assumption, we computed compressed inverted files for distinct local collections (of size 96
Mbytes each), computed the respective global vocabulary, partitioned lexicographically the
compressed inverted lists, and shipped each portion to the proper remote processor. Figure 6
illustrates the results. As can be observed, with large inverted files, an even partition of the
global inverted file among the various processors translates into an even distribution of the
network traffic, which validates our modeling assumption.

Figure 7 compares the total execution times for the sequential and the distributed RR
algorithms considering collection sizes which vary from 8 Gbytes to 128 Gbytes. In this case
the RR algorithm is always inverting a collection 8 times larger (because p = 8) than the
sequential algorithm. The two total execution times are basically the same. The reasons for
this extremely good efficiency are the facts that transmission across the network is overlapped
with disk access operations and that computation of the global vocabulary can be done very
fast.

In Figure 8 we compare the execution times of our three distributed algorithms for col-
lection sizes which vary from 8 Gbytes to 128 Gbytes. We first observe that the LR and RR
algorithms are roughly 40% faster than the LL algorithm. Thus, investing time in a more so-
phisticated distributed algorithm is worthwhile. With 12.5 Gbytes of text data per processor
and 8 processors (for a total collection size of 100 Gbytes), the LR algorithm takes roughly
12 hours to generate a global distributed inverted file. Using 16 processors and 6.25 Gbytes
of text data per processor, this time drops to roughly 6 hours. We also notice that at this
network speed, the LR algorithm presents behavior very close to the RR algorithm. Since the
LR algorithm is simpler to implement than the RR algorithm, it should be the algorithm of
choice in most practical situations.

In Figure 9 we compare the execution times of our three distributed algorithms for a con-
stant local collection size (¢ = 8 Gbytes in each processor) and various number of processors.
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Figure 7: Execution times for the sequential and the RR algorithms considering various
collection sizes.
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Figure 8: Execution times of the LL, LR, and RR algorithms for various sizes of the collection
in each processor.

We observe that at this network speed, the cost of each of our algorithms remains basically
constant as the number of processors increase. This means that larger and larger collections
can be inverted at almost no additional cost in time if (a) a larger number of processors is
available and (b) the processors can communicate in parallel without contention.

In Figure 10 we compare the execution times of our distributed algorithms for various
sizes b of the local memory buffer at each processor. The number of processors is 8 and the
local collection size is 8 Gbytes. We first observe that a relatively small memory buffer (with
regard to the size of the local collection) might be disastrous for the LR algorithm. The reason
is that it executes a pR-way merge which becomes costly if the number R of runs increases
too much. This effect is not present in the LL algorithm because it executes an R-way merge
followed by a p-way merge (the RR algorithm executes only an R-way merge). Fortunately,
this effect disapears with a relatively modest increase in the memory buffer size. For instance,
for b = 16 Mbytes the effect is no longer noticeable. Thus, the LR algorithm might be the
preferable choice as long as the ratio between the memory buffer b and the local collection ¢
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Figure 9: Execution times of our distributed algorithms for various numbers of processors for
a collection ¢ = 8 Gbytes in each processor.

is kept large enough (in the case of Figure 10, larger than 16Mbytes/8Gbytes).
Q0000 ¢

60000 -4 oenmeee e

50000 -+~ ee oo |~ LL
; - LR

Time (s)

20000 - TTTmTm s IS s e e

1 2 3 45 6 7 8 9 1011 12 13 14 15 16
Local Memory Buffer Size (Mbytes per Processor)

Figure 10: Total execution times for various sizes of the local memory buffer (p = 8, ¢ =
8 Gbytes).

In Figure 11 we evaluate the impact of varying the available network bandwidth. We
notice that a network bandwidth much smaller than the disk transfer rate leads to poor
performance by the LL and LR algorithms. However, this effect disapears quickly as the
network bandwidth increases. For instance, for a ratio t,/t, close to 1 (equivalent to a
network bandwidth of 80Mbps in Figure 11), the effect is no longer noticeable.

i From our analysis, we conclude that the LR algorithm is currently the preferrable choice
because it is simpler to implement and presents performance close to that of the RR algorithm
in most practical situations.
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Figure 11: Execution times of our distributed algorithms for various values of network band-
width.

7 Conclusions

In this paper we investigated three new and scalable algorithms for the distributed disk-
based generation of very large inverted files in the context of a high bandwidth network of
workstations. We focused our study on workstations whose main memory is considerable
smaller than the inverted file to be generated. Further, we considered that the inverted files
to generate are compressed. This allows fast index generation with low space consumption,
which is important in a distributed environment where data has to be moved across the
network.

We modified a well known sequential disk-based algorithm for generating compressed
inverted files described in [13] to generate frequency-sorted inverted lists because these allow
faster ranking [8, 9]. We then discussed how to modify this sequential algorithm to transform
it into a distributed one. We showed that three distinct variations are possible which we
call LL, LR, and RR. Through experimentation and analysis, we discussed the performance
of these three algorithms and the tradeoffs among them. We were able to show that the LR
and RR algorithms are superior algorithms which present an efficiency close to 1, whenever
the network bandwidth is comparable to the disk bandwidth. Further, we argued that the LR
algorithm is preferrable in most practical situations because, in those situations, it presents
performance comparable to that of the RR algorithm but is simpler to implement.

Our experiments confirm that our algorithms are efficient to invert very large text collec-
tions and that, for practical purposes, their costs vary linearly with the size of the local text
in each workstation. For instance, with 8 processors and 16 Mbytes of memory available in
each processor (in a network at 80 Mbps), the LR and RR algorithms are able to invert a 100
gigabytes collection (the size of the very large TREC-7 collection) in roughly 12 hours.

In the near future we intend to experiment with our algorithms using collections whose
sizes go up to 0.5 terabytes.
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