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In this part

✔Probability Ranking Principle
– simple case

– case with retrieval costs

✔Binary Independence Retrieval (BIR)
– Estimating the probabilities

✔Binary Independence Indexing (BII)
– dual to BIR



The Basics

✔Bayesian probability formulas

✔Odds:
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The Basics

)(

)()|(
)|(

)(

)()|(
)|(

xp

NRpNRxp
xNRp

xp

RpRxp
xRp

=

=

• Document Relevance:

• Note:
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Probability Ranking Principle

✔Simple case: no selection costs.

✔ x is relevant iff p(R|x) > p(NR|x)

✔(Bayes’ Decision Rule)

✔PRP in action: Rank all documents by
p(R|x).



Probability Ranking Principle

✔More complex case: retrieval costs.
– C - cost of retrieval of relevantdocument

– C’ - cost of retrieval of non-relevantdocument

– let d, be a document

✔Probability Ranking Principle: if

for all d’ not yet retrieved, thend is the next
document to be retrieved
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Next: Binary Independence Model



Binary Independence Model

✔ Traditionally used in conjunction with PRP

✔ “Binary” = Boolean : documents are represented
as binary vectors of terms:

–

– iff term i is present in documentx.

✔ “Independence”: terms occur in documents
independently

✔ Different documents can be modeled as same
vector.
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Binary Independence Model

✔ Queries: binary vectors of terms

✔Given queryq,
– for each documentd need to computep(R|q,d).

– replace with computingp(R|q,x)wherex is
vector representingd

✔Interested only in ranking

✔Will use odds:
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Binary Independence Model

• UsingIndependenceAssumption:
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Constant for
each query

Needs estimation
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Binary Independence Model
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• Sincexi is either 0 or 1:
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• Assume, for all terms not occuring in the query (qi=0) ii rp =

Then...



All matching terms Non-matching
query terms

Binary Independence Model

All matching terms
All query terms
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Binary Independence Model

Constant for
each query

Only quantity to be estimated
for rankings
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Binary Independence Model

• All boils down to computing RSV.
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So, how do we computeci’s from our data ?



Binary Independence Model

• Estimating RSV coefficients.
• For each termi look at the following table:

Documens Relevant Non-Relevant Total

Xi=1 s n-s n

Xi=0 S-s N-n-S+s N-n

Total S N-S N

S
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• Estimates:
Add 0.5 to
every
expression



PRP and BIR: The lessons

✔ Getting reasonable approximations of
probabilities is possible.

✔ Simple methods work only with restrictive
assumptions:
– term independence

– terms not in query do not affect the outcome

– boolean representation of documents/queries

– document relevance values are independent

✔ Some of these assumptions can be removed



Next: Binary Independence
Indexing



Binary Independence Indexing vs.
Binary Independence Retrieval

•BIR •BII
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✔ Many Documents, One
Query

✔ Bayesian Probability:

✔ Varies: document
representation

✔ Constant: query
(representation)

✔ One Document, Many
Queries

✔ Bayesian Probability

✔ Varies: query

✔ Constant: document



Binary Independence Indexing

✔ “Learnng” from queries
– More queries: better results

✔p(q|x,R)- probability that if documentx had
been deemed relevant, queryq had been
asked

✔ The rest of the framework is similar to BIR
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Binary Independence Indexing:
Key Assumptions

✔ Term occurrence in queries isconditionally
independent:

✔ Relevanceof document representationx
w.r.t. queryq depends onlyon the terms
present in the query (qi=1)

✔ For each termi not used in representationx of
documentd (xi=0):

– only positive occurrences of terms count
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Binary Independence Indexing
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constant Equal to 1
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