
LAMP-TR-58
CAR-TR-955
CS-TR-4190

September 2000

Software Architecture of PSET:

A Page Segmentation Evaluation Toolkit

Song Mao and Tapas Kanungo

Software Architecture of PSET:
A Page Segmentation Evaluation Toolkit

Song Mao and Tapas Kanungo

Language and Media Processing Laboratory
Center for Automation Research

University of Maryland, College Park, MD

Abstract

Empirical performance evaluation of page segmentation algorithms has become increas-
ingly important due to the numerous algorithms that are being proposed each year. In
order to choose between these algorithms for a speci�c domain it is important to empir-
ically evaluate their performance. To accomplish this task the document image analysis
community needs i) standardized document image datasets with groundtruth, ii) evalu-
ation metrics that are agreed upon by researchers, and iii) freely available software for
evaluating new algorithms and replicating other researchers' results.

In an earlier paper (SPIE Document Recognition and Retrieval 2000) we published
evaluation results for various popular page segmentation algorithms using the Univer-
sity of Washington dataset. In this paper we describe the software architecture of the
PSET evaluation package, which was used to evaluate the segmentation algorithms. The
description of the architecture will allow researchers to understand the software better,
replicate our results, evaluate new algorithms, experiment with new metrics and datasets,
etc. The software is written using the C language on the SUN/UNIX platform and is
being made available to researchers at no cost.

This research was funded in part by the Department of Defense under Contract MDA 9049-6C-1250,
Lockheed Martin under Contract 9802167270, the Defense Advanced Research Projects Agency under
Contract N660010028910, and the National Science Foundation under Contract IIS9987944.

1 Introduction

It is important to quantitatively monitor progress in any scienti�c �eld. The informa-
tion retrieval community and the speech recognition community, for example, have yearly
competitions in which researchers evaluate their latest algorithms on clearly de�ned tasks,
datasets, and metrics. To make such evaluations possible, researchers have access to stan-
dardized datasets, metrics, and freely available software for scoring the results produced
by algorithms [18, 1].

In the Document Image Analysis area, regular evaluations of OCR accuracy have been
conducted by UNLV [3]. Page segmentation algorithms, which are crucial components of
OCR systems, were at one time evaluated by UNLV based on the �nal OCR results, but
not on the geometric results of the segmentation. Recently [14], we empirically compared
various commercial and research page segmentation algorithms, using the University of
Washington dataset. We used a well-de�ned (geometric) line-based metric and a sound
statistical methodology to score the segmentation results. Furthermore, unlike the UNLV
evaluations, we trained the segmentation algorithms prior to evaluating them.

In this paper we describe in detail the software architecture of the package called
PSET, which we used in [14] to evaluate page segmentation algorithms. This package was
developed by us at the University of Maryland and will be made available to researchers
at no cost. Publication of the package will allow researchers to implement our �ve-step
evaluation methodology and evaluate their own algorithms.

Software architecture can be described using methods such as Petri Nets and Data
Flow Diagrams [8]. We describe the architecture of PSET, the I/O �le formats, etc.
using Object-Process Diagrams (OPDs) [5], which are similar in spirit to Petri Nets.

The package, called the Page Segmentation Evaluation Toolkit (PSET), is modular,
written using the C language, and runs on the SUN/UNIX platform. The software has
been structured so that it can be used at the UNIX command line level or compiled into
other software packages by calling API functions. The description in this paper will aid
users in using, updating, and modifying the PSET package. It will also help users to add
new algorithm modules to the package and to interface it with other software tools and
packages. The PSET package includes three research page segmentation algorithms; 1 a
textline-based benchmarking algorithm; and a Simplex-based optimization algorithm for
estimating algorithm parameters from training datasets.

This paper is organized as follows. In Section 2, we discuss the page segmentation
problem. In Section 3, we present our �ve-step page segmentation performance evaluation
methodology. In Section 4, we describe the architecture and �le formats of our PSET
package in detail and show how to implement each step of our �ve-step performance
evaluation methodology. In Section 5, we give the hardware and software requirements
for using the PSET package. In Section 6, we discuss our future work. Finally in
Section 7, we give a summary of the article. A detailed description of our textline-based
metric is given in an Appendix for completeness.

1We implemented the X-Y cut algorithm [15] and the Docstrum algorithm [16]. Kise [11] provided
us the C implementation of his Voronoi-based algorithm.

1

2 The Page Segmentation Problem

There are two types of page segmentation, physical and logical. Physical page segmen-
tation is a a process of dividing a document page into homogeneous zones. Each of these
zones can contain one type of object. These objects can be of type text, table, �gure,
halftone image, etc. Logical page segmentation is a process of assigning logical relations
to physical zones. For example, reading order labels order the physical zones in the order
in which they should be read. Similarly, assigning section and sub-section labels to phys-
ical zones creates a hierarchical document structure. In this paper, we focus on physical
page segmentation and refer to it as simply page segmentation hereafter.

Page segmentation is a crucial preprocessing step for an OCR system. In many
cases, OCR engine recognition accuracy depends heavily on page segmentation accuracy.
For instance, if a page segmentation algorithm merges two text zones horizontally, the
OCR engine will recognize text across text zones and hence generate unreadable text.
Page segmentation algorithms can be categorized into three types: top-down, bottom-
up, and hybrid approaches. Top-down approaches iteratively divide a document page
into smaller zones according to some criterion. The X-Y cut algorithm developed by
Nagy et al. [15] is a typical top-down algorithm. Bottom-up approaches start from
document image pixels, and iteratively group them into bigger regions. The Docstrum
algorithm of O'Gorman [16] and the Voronoi-based algorithm of Kise et al. [11] are
representative bottom-up approaches. Hybrid approaches are usually a mixture of top-
down and bottom-up approaches. The algorithm of Pavilidis and Zhou [17] is an example
of the hybrid approach that employs a split-and-merge strategy.

3 Performance Evaluation Methodology

In order to objectively evaluate page segmentation algorithms, a performance evaluation
methodology should take into consideration the performance metric, the dataset, the
training and testing methods, and the methodology of analyzing experimental results. In
this section, we introduce a �ve-step methodology that we proposed earlier [14, 12, 13].
The PSET package is an implementation of this methodology.

Let D be a given dataset containing (document image, groundtruth) pairs (I;G),
and let T and S be a training dataset and a test dataset respectively. The �ve-step
methodology is described as follows:

1. Randomly divide the dataset D into two mutually exclusive datasets: a training
dataset T and a test dataset S. Thus, D = T [S and T \ S = �, where � is the
empty set.

2. De�ne a computable performance metric �(I;G;R): Here I is a document image,
G is the groundtruth of I, and R is the OCR segmentation result on I. In our case,
�(I;G;R) is de�ned as textline accuracy, as described in the Appendix.

3. Given a segmentation algorithm A with a parameter vector pA; automatically
search for the optimal parameter value p̂A for which an objective function f(pA;T ; �;A)

2

assumes the optimal value on the training dataset T . In our case, this objective
function is de�ned as the average textline error rate on a given training dataset:

f(pA;T ; A; �) =
1

#T

2
4 X

(I;G)2T

1� �(G;SegA(I;p
A))

3
5 :

4. Evaluate the segmentation algorithm A with the optimal parameter p̂A on the test
dataset S by

�
�
f�(G;SegA(I; p̂

A))j(I;G) 2 Sg
�

where � is a function of the performance metric � on each (document image,
groundtruth) pair (I;G) in the test dataset S, and SegA(�; �) is the segmentation
function corresponding to A. The function � is de�ned by the user. In our case,

�
�
f�(G;SegA(I; p̂

A))j(I;G) 2 Sg
�
= 1� f(p̂A;S; �;A);

which is the average of the textline accuracy �(G;SegA(I; p̂A)) achieved on each
(document image, groundtruth) pair (I;G) in the test dataset S.

5. Perform a statistical analysis to evaluate the statistical signi�cance of the evaluation
results, and analyze the errors to identify/hypothesize why the algorithms perform
at their respective levels.

4 Architecture, File Formats, and Evaluation Methodology

In this section, we �rst describe the software architecture of the PSET package and the
formats of the �les used to communicate with the package. Next we show how this soft-
ware package can be used to implement the �ve steps of the page segmentation evaluation
methodology described in Section 3. Generic �le format descriptions as well as speci�c
examples are provided, for clearer understanding. This description of the architecture
and �le formats will allow users to i) understand the working of the PSET package, ii)
replicate our results, iii) modify the parameter �les for datasets, metrics, etc. and conduct
their own evaluation experiments, iv) understand, maintain and improve the software,
and v) evaluate new algorithms and compare the results with existing algorithms. The
PSET package has been used to evaluate �ve page segmentation algorithms [14, 13].

4.1 Architecture and File Formats

The PSET package can be used to i) automatically train a given page segmentation
algorithm, i.e., automatically select optimal algorithm parameters on a given training
dataset, and ii) evaluate the page segmentation algorithm with the optimal parameters
found in i) on a given test dataset. Figure 1 shows the overall architecture of the PSET
package and illustrates these two functionalities.

The overall architecture shows all the input �les that are needed to conduct the
training and testing experiments for a given page segmentation algorithm, and all the

3

TrainSeg

Train Protocol
File

(trp)

Training Dataset

(lst)
Filename List

Groundtruth
(DAF)

(trr)

Train Report

File

Document
Images
(TIF)

Segmentation
Algorithm

Parameter File
(spr)

Optimization
Algorithm

Parameter File
(opr)

TestSeg

Test Dataset
Filename List

(lst)

Test Protocol
File
(trp)

Groundtruth
(DAF)

Document
Images
(TIF)

Optimal
Segmentation

Algorithm
Parameter File

(spr)

Test Report
File

(ter)

Parameter File

Benchmark
Algorithm

(bpr)

Weight
File

(wgt)

Segmentation
Algorithm
Shell File

(sh)

Figure 1: Overall PSET architecture. The left half of the architecture represents the
training phase; the right half represents the testing phase. Note that in the testing
phase, the optimal page segmentation parameter found in the training phase is used. The
training and testing phases use the same performance metric related input �les (bench-
mark algorithm parameter �le (bpr) and weight �le (wgt)) and the same segmentation
algorithm shell �le (sh).

Table 1: Summary of the �le formats in the PSET package.

File Type Extension Description
Dataset List File lst It saves the root name of each image in a dataset.
Train Protocol File trp It saves the protocol parameters of the training experiment.
Test Protocol File tep It saves the protocol parameters of the testing experiment.
Segmentation Algorithm spr It saves the parameters of a page segmentation algorithm
Parameter File that are to be trained.
Benchmarking Algorithm bpr It saves all parameters of a benchmarking algorithm.
Parameter File
Optimization Algorithm opr It saves all parameters of an optimization algorithm.
Parameter File
Groundtruth File DAF It saves document images and their groundtruth information.
Segmentation Result File dafs It saves document images and their segmentation results.
Train Report File trr It saves the training result of a segmentation algorithm.
Test Report File ter It saves the test result of a segmentation algorithm.
Weight File wgt It saves a set of weights for a set of error measures.
Segmentation Algorithm sh It saves a shell command for running segmentation
Shell File algorithm executable. It is a Bourn shell program.

output �les generated by the training and testing procedures. Table 1 lists all the �les
used, their purposes, and their �le name extensions.

Input �les include various initial algorithm parameter �les (an optimization algo-
rithm parameter �le (opr), a page segmentation algorithm parameter �le (spr), and a
benchmark algorithm parameter �le (bpr)), dataset �les (lst), a shell �le (sh), and exper-
imental protocol �les (training protocol �le (trp) and test protocol �le (tep)). Users need
to provide these �les to the PSET package to conduct training or testing experiments.
The output �les of the training phase include a training report �le (trr) and an opti-
mal segmentation algorithm parameter �le (spr). The training report �le (trr) records
intermediate as well as �nal training results of the training experiment. The optimal
segmentation algorithm parameter �le (spr) records the optimal segmentation algorithm
parameter values found in the training phase. The output of the testing phase is a testing

4

report �le (ter), which records a set of error measures, timing and performance scores for
each image in the test dataset, and a �nal average performance score over all images in
the test dataset. Figure 2 shows various input �le formats. Figure 3 shows the training
report �le format and Figure 4 shows the test report �le format.

[comments]

DATASET = <dataset �le name>
GROUNDTRUTH DIR = <groundtruth directory name>
IMG DIR = <image directory name>
GT SUFFIX = <groundtruth �le su�x>
SG SUFFIX = <segmentation result �le su�x>
IMG SUFFIX = <image �le su�x>
TRAIN RESULT DIR = <training result �le location>
OPT ALG = <optimization algorithm name>
BEN ALG = <benchmark algorithm name>
SEG ALG = <page segmentation algorithm name>

[comments]

DATASET = <testing dataset �le name>
GROUNDTRUTH DIR = <groundtruth directory name>
IMG DIR = <image directory name>
GT SUFFIX = <groundtruth �le su�x>
SG SUFFIX = <segmentation result �le su�x>
IMG SUFFIX = <image �le su�x>
TEST RESULT DIR = <testing result �le location>
BEN ALG = <benchmark algorithm name>
SEG ALG = <page segmentation algorithm name>

[comments]
<parameter 1 name> = <value>
<parameter 2 name> = <value>

. = .

. = .

. = .
<parameter N name> = <value>

(a) (b) (c)
File Attribute Name Description
DATASET The �lename of a list �le that saves the root name of

each image in a dataset.
GROUNDTRUTH DIR The location of the groundtruth �les.
IMG DIR The location of the image �les.
GT SUFFIX The su�x of a groundtruth �lename, e.g. the su�x of

groundtruth �le \A001.DAF" is \.DAF".
SG SUFFIX The su�x of a segmentation result �lename, e.g. the su�x of

segmentation result �le \A001.dafs" is \.dafs".
IMG SUFFIX The su�x of an image �lename, e.g. the su�x of image �le

\A001BIN.TIF" is \BIN.TIF".
TRAIN RESULT DIR The location of the training result �les generated by a training experiment.
TEST RESULT DIR The location of the testing result �les generated by a test experiment.
OPT ALG The name of the optimization algorithm that is to be used.
BEN ALG The name of the benchmarking algorithm that is to be used.
SEG ALG The name of the page segmentation algorithm that is to be used.

(d)

Figure 2: Input �le formats. The training protocol �le format is shown in (a), the test
protocol �le format is shown in (b), and the algorithm parameter �le format is shown in
(c). The description of the attributes in (a) and (b) is given in (d).

The parameter values in the parameter �les are �rst read into the corresponding data
structures inside the TrainSeg and the TestSeg modules as shown in Figure 5. The Train
module shown in Figure 5(a) is shown at a �ner level of detail in Figure 6, where the
interaction of the optimization algorithm and the objective function computation module
is illustrated. A detailed view of the Objective Function Genscore showing the interaction
between the segmentation algorithm module and the performance metric computation
module is shown in Figure 7(a). Finally, a blown-up view of the Test module shown in
Figure 5(b) is shown in Figure 7 (b).

4.2 Implementing the Evaluation Methodology

In this section we show how a user can implement each step of the �ve-step evaluation
methodology described in Section 3. Each variable in the methodology is mapped to a
speci�c parameter �le and each step is mapped to a speci�c group of modules in the
package.

1. The training dataset T is speci�ed in the image root name list �le (lst). The �le
name and location of the list �le and the location of the image and groundtruth �les

5

[experimental environments]
#
Feval p[1] p[2] . . . p[n] score timing plow[1] plow[2] . . . plow[n] Flow
1 <data> <data> . . . <data> <data> <data> <data> <data> . . . <data> <data>
2 <data> <data> . . . <data> <data> <data> <data> <data> . . . <data> <data>
.
.
.
M <data> <data> . . . <data> <data> <data> <data> <data> . . . <data> <data>

Optimal Parameter Vector = <param 1> <param 2> . . . <param N>
Optimal Performance Value = <data>

End of the training.

(a)

Item Name Description
Feval Number of objective function evaluations.
p[1], p[2], . . . , p[n] Current objective function parameter vector value;

here the objective function parameter vector is the
page segmentation parameter vector being trained.
n is the dimensionality of the parameter vector.

score Current performance measure, in this case,
textline error rate.

timing The time it takes to obtain the current score.
plow[1], plow[2], . . . , plow[n] The objective function parameter vector value that

gives the best score so far.
Flow The best score so far | in this case, the minimum

textline error rate so far.

(b)

Figure 3: The training report �le format. The format is shown in (a) and the description
of each column entry in (a) is shown in (b).

<experimental environments>
#
#Img nSpl nMrg nFA nSplL nMrgL nMisL nErrL nGtL score timing
 <data> <data> <data> <data> <data> <data> <data> <data> <data> <data>
 <data> <data> <data> <data> <data> <data> <data> <data> <data> <data>
.
.
.
 <data> <data> <data> <data> <data> <data> <data> <data> <data> <data>

The average textline accuracy = <data>

End of testing.

(a)

Column Entry Description
Img The root name of the current image �le.
nSpl The number of split errors.
nMrg The number of horizontal merge errors.
nFA The number of false alarm errors.
nSplL The number of split textlines.
nMrgL The number of horizontally merged textlines.
nMisL The number of mis-detected textlines.
nErrL The number of error textlines (textlines that are

either split, horizontally merged or mis-detected).
nGtl The number of groundtruth textlines.
score The performance measure (textline error rate) on current image.
timing The time taken to obtain the score.

(b)

Figure 4: The test report �le format. The format is shown in (a) and the description of
each column entry in (a) is shown in (b).

6

Groundtruth

Document
Images

Dataset
Filename List

(lst)

Benchmark
Algorithm

Parameter File
(bpr)

Segmentation
Algorithm

Parameter File
(spr)

(sh)

Segmentation
Algorithm
Shell File Data Structure

Parameter
Benchmark Alg.

Data Structure
Alg. Parameter
Segmentation

(TIF)

(DAF)

ReadBenchParam ReadSegParam

Weight
File

(wgt)

Optimization
Algorithm

Parameter File
(opr)

Algorithm
Optimization

Data Structure

ReadOptParam

Train Protocol
File
(trp)

ReadTrainProtocol

Train Protocol
Data Structure

Train

(trr)
File

Train Report

 Test

Test Protocol
Data Structure

Groundtruth

Document
Images

Test Report

Dataset
Filename List

(lst)
File
(tep)

Test Protocol Benchmark
Algorithm

Parameter File
(bpr)

Weight

(wgt)
File

(sh)

Segmentation
Algorithm
Shell File Data Structure

Parameter
Benchmark Alg.

File
(ter)

(TIF)

(DAF)

ReadBenchParam ReadSegParamReadTestProtocol

Optimal
Segmentation

Algorithm
Parameter File

(spr)

Data Structure
Alg. Parameter
Segmentation

Optimal

(a) (b)

Figure 5: Parameter reading stage of the training phase (a) and the testing phase (b).
At this level, various parameter �les are read into their corresponding data structures
which are fed into the Train and Test modules.

Test Protocol

Data Structure

Benchmark
Alg. Parameter
Data Structure

Segmentation
Algorithm
Shell File

(sh)

Weight File
(wgt)

(trr)
File

Train Report

Optimization
Algorithm

(spr)
Parameter File

Algorithm
Optimal Seg.Optimization

Data Structure
Alg. Parameter

Document
Images
(TIFF)

Groundtruth
(DAF)Objective

Function
Genscore

Segmentation
Alg. Parameter
Data Structure

Average Score

Figure 6: The Train module. In this module, the objective function is optimized over a
given training dataset. Two �les are generated by this module, a train report �le (trr)
and an optimal segmentation algorithm parameter �le (spr).

are speci�ed in the training protocol �le (trp). This information is later read into
the Train Protocol Parameter Data Structure as shown in Figure 5(a). Similarly, a
test dataset S is speci�ed in another image root name list �le (lst). The �le name
and location of the list �le and the location of image and groundtruth �les are
speci�ed in the test protocol �le (tep). This information is later read into the test
protocol parameter data structure as shown in Figure 5(b). Other experimental
protocol parameters such as �le su�x and algorithms used are also speci�ed in the
training protocol �le (trp) and test protocol �le (tep). Figures 2(a) and (b) show
generic formats for these two �les and Figure 8 shows samples of these two �les.

2. The performance metric �(I;G;R) is computed in module B, shown in Figures 7(a)
and (b). (I;G) is an (image, groundtruth) pair, which is represented by two single
pages in the architecture, and R is the segmentation result �le represented by
Segmentation Result (dafs). The error counter algorithm for generating a set of
error measures is implemented in the Bench module. In the BenchScoring module,

7

Bench

Finished ?

Y

Seg Module

ReadWeight

Segmentation
Algorithm Benchmark

ParameterAlg.

BenchScoring

Error
Measurement
Data Structure

Data Structure
Score

Score
Average

Compute

Average Score

Weight

Data Structure

Weight File
(wgt)

Alg. Parameter
Segmentation

Data Structure
Shell File

(sh) Data Structure

SetUp

Experimental
parameters

Experiment
Environment

N

Select Next
Image and

Groundtruth
Pair

Groundtruth

Parameter

Images
Document

(TIF)

Train Protocol

Data Structure

(DAF)

(TIF)

Document
Image

(dafs)
Result

Segmentation

Groundtruth
(DAF) C

BA

Bench

Finished ?

Y

Seg Module

ReadWeight

Segmentation
Algorithm Benchmark

ParameterAlg.

BenchScoring

Error
Measurement
Data Structure

Data Structure
Score

Score
Average

Compute

Average Score

Weight

Data Structure

Weight File
(wgt)

Shell File
(sh) Data Structure

Φ =
1 - Average Score

Test Report
File
(ter)

Data Structure
Alg. Parameter
Segmentation

Optimal

SetUp

Experimental
parameters

Experiment
Environment

N

Select Next
Image and

Groundtruth
Pair

Groundtruth

Images
Document

(TIF)

(DAF)

Test Protocol
Parameter

Data Structure

Document
Image
(TIF)

Groundtruth
(DAF)

Result
Segmentation

(dafs)

C

BA

(a) (b)

Figure 7: Software architectures of the objective function module and the test module.
Module A represents the page segmentation algorithm module, module B represents
the page segmentation error counter and scoring module, and module C represents the
objective function module. The test module in (b) has sub-modules similar to those
in (a). It also has a module for computing a �nal testing performance score (average
textline accuracy).

a weighted error measure 1 � �(I;G;R) is computed. The formal de�nitions of
error measures and performance metrics are given in the Appendix. To compute a
performance metric, two input �les, a benchmark Algorithm Parameter File (bpr)
and a weight �le (wgt), are required. Examples of these two �les are shown in
Figure 13. Users can substitute their own performance metrics and error counters
in place of these two modules. However, this also requires that the users write a
new ReadBenchParam module and de�ne a new benchmark algorithm parameter
data structure as shown in Figure 5.

3. The objective function f(pA;T ; A; �) is represented by the module C in Figure 7(a),
where page segmentation algorithm A is represented by module A, the training
dataset T is speci�ed in the train protocol parameter data structure, the compu-
tation of performance metric � is conducted in module B, and objective function
parameter vector pA is represented by the segmentation algorithm parameter data
structure in the architecture. The optimization procedure is shown in Figure 6
in a simpli�ed representation. In addition, a benchmark algorithm parameter �le
(bpr), weight �le (wgt), shell �le (sh), list �le (lst), training protocol �le (trp),

8

Training experiment protocal
By: Song Mao
Feb. 21, 2000
LAMP, UMCP

DATASET = train.lst
GROUNDTRUTH DIR = /fs/mirak2/LAMP/UWIII/ENGLISH/LINEWORD/DAFS/
IMG DIR = /fs/mirak2/LAMP/UWIII/ENGLISH/LINEWORD/IMAGEBIN/
GT SUFFIX = .DAF
SG SUFFIX = .dafs
IMG SUFFIX = BIN.TIF
TRAIN RESULT DIR = ./
OPT ALG = simplex
BEN ALG = textline based
SEG ALG = docstrum

Test experiment protocal
By: Song Mao
Feb. 21, 2000
LAMP, UMCP

DATASET = test.lst
GROUNDTRUTH DIR = /fs/mirak2/LAMP/UWIII/ENGLISH/LINEWORD/DAFS/
IMG DIR = /fs/mirak2/LAMP/UWIII/ENGLISH/LINEWORD/IMAGEBIN/
GT SUFFIX = .DAF
SG SUFFIX = .dafs
IMG SUFFIX = BIN.TIF
TEST RESULT DIR = ./
BEN ALG = textline based
SEG ALG = xycut

(a) (b)

Figure 8: Sample protocol �les. From both the train protocol �le (a) and the test protocol
�le (b), we can see that the list �les of the training dataset and test dataset are train.lst
and test.lst respectively, the optimization algorithm used is the Simplex algorithm, the
benchmarking algorithm used is the Textline-based algorithm, the page segmentation
algorithm trained is theDocstrum algorithm, and the page segmentation algorithm tested
is the X-Y cut algorithm. We can also �nd the locations of the groundtruth �les, image
�les and training and test result �les. Moreover, the su�xes for various �les are given
for �le name manipulation in the PSET API.

optimization algorithm parameter �le (opr) and segmentation algorithm parameter
�le (spr) are required to conduct objective function optimization. Samples of opr
and spr are shown in Figure 9. The generic �le format of these sample �les is shown
in Figure 2.

The Simplex Optimization
Algorithm Parameters
NDIM = 4
CRIFLG = nelder-mead
NMAX = 500
FTOL = 0.000001
ALPHA = 1.0
BETA = 0.5
GAMMA = 2.0
SIGMA = 0.5
P = 100,80,100,50
SCALE = 20,20,20,20

The X-Y Cut Page Segmentation
Algorithm Parameters
ALG MODE = func call
TNX = 100
TNY = 80
TCX = 100
TCY = 50

(a) (b)

Figure 9: Samples of an optimization algorithm parameter �le (opr) and a segmentation
algorithm parameter �le (spr). A sample �le for the Simplex optimization algorithm is
shown in (a) and a sample �le for the X-Y cut segmentation algorithm is shown in (b).
Their detailed parameter descriptions can be found in [12].

The optimal objective function parameter vector p̂A is stored in the �le optimal
segmentation algorithm parameter �le (spr) shown in Figure 6. Users can substitute
their own objective function in place of the architecture shown in Figure 7(a) and
their own optimization algorithmmodule in the place of theOptimization Algorithm
module shown in Figure 6. Again, they need to write new parameter reading
functions and de�ne corresponding data structures. This step generates two �les,

9

a training report �le (trr) and an optimal segmentation algorithm parameter �le
(spr). Figure 10(a) shows a sample training report �le.

#
File: TrainDocstrum 1,4,2.1,6.trr
Purpose: training result of the Docstrum algorithm using Simplex algorithm.
User: maosong
Date: 09/18/2000/ 19:12:25
Operating system: SunOS, 5.6, Generic 105181-19
Machine name: hanzi.cfar.umd.edu
Working directory: /hanzi/maosong/software/SegEvalToolKit/pset-1.0/experiments/TrainDocstrum
Machine type: sun4u
Command line: TrainSeg -p train protocol.trp -b bench.bpr -o simplex.opr -s docstrum.spr
-w weight.wgt -t TrainDocstrum 1,4,2.1,6.trr -r docstrum optimal 1,4,2.1,6
#

Feval p[1] p[2] p[3] p[4] score timing plow[1] plow[2]plow[3]plow[4]Flow
1 1.000 4.000 2.100 6.000 39.874 206.6 1.000 4.000 2.100 6.000 39.874
2 2.000 4.000 2.100 6.000 39.698 155.0 2.000 4.000 2.100 6.000 39.698
3 1.000 5.000 2.100 6.000 43.337 206.3 2.000 4.000 2.100 6.000 39.698
4 1.000 4.000 3.100 6.000 44.073 207.5 2.000 4.000 2.100 6.000 39.698
5 1.000 4.000 2.100 7.000 39.874 204.2 2.000 4.000 2.100 6.000 39.698
6 1.250 4.250 2.100 6.250 39.761 172.2 2.000 4.000 2.100 6.000 39.698
7 1.500 4.500 1.100 6.500 34.718 160.4 2.000 4.000 2.100 6.000 39.698
8 1.750 4.750 0.100 6.750 30.138 158.4 2.000 4.000 2.100 6.000 39.698
9 1.438 4.188 1.600 6.438 35.710 162.4 1.750 4.750 0.100 6.750 30.138
10 1.875 3.375 1.100 6.875 25.513 155.1 1.750 4.750 0.100 6.750 30.138
11 2.312 2.562 0.600 7.312 10.513 153.2 1.750 4.750 0.100 6.750 30.138
12 1.766 3.828 1.225 6.766 31.076 156.2 2.312 2.562 0.600 7.312 10.513
13 2.531 3.656 0.350 7.531 27.372 153.2 2.312 2.562 0.600 7.312 10.513
.
.
.
160 2.533 1.975 0.647 7.547 5.336 153.4 2.535 1.978 0.645 7.550 5.336
161 2.533 1.977 0.646 7.548 5.336 153.2 2.533 1.975 0.647 7.547 5.336

Optimal Parameter Vector = 2.533 1.975 0.647 7.547
Optimal Performance Value = 5.336

End of the training.

#
File: TestXycut 78,32,35,54.ter
Purpose: testing result of the X-Y cut algorithm.
User: maosong
Date: 09/20/2000/ 10:58:33
Operating system: SunOS, 5.6, Generic 105181-19
Machine name: hangul.cfar.umd.edu
Working directory: /a/hanzi/hanzi/maosong/software/pset-1.0/experiments/TestXycut
Machine type: sun4u
Command line: TestSeg -p test protocol.tep -b bench.bpr -s xycut optimal.spr
-w weight.wgt -t TestXycut 78,32,35,54.ter
#

ImgnSpl nMrg nFA nSplL nMrgL nMisL nErrL nGtL score timing
A001 1 0 19 1 0 0 1 35 0.029 3.060
A002 2 0 6 2 0 1 3 5 0.600 2.030
A004 1 0 5 1 0 0 1 44 0.023 2.620
A005 1 46 8 1 52 0 53 62 0.855 2.290
A006 3 0 5 3 0 0 3 116 0.026 2.890
A007 4 0 11 4 0 0 4 127 0.031 3.050
A008 1 0 2 1 0 0 1 104 0.010 2.610
A009 1 0 2 1 0 0 1 47 0.021 2.140
A00A 1 0 2 1 0 0 1 45 0.022 2.170
A00B 2 0 4 2 0 0 2 183 0.011 3.130
A00C 11 0 4 11 0 0 11 155 0.071 2.770
A00D 0 0 4 0 0 1 1 35 0.029 2.000
.
.
.
V00N 2 0 1 2 0 0 2 95 0.021 2.520

The average textline accuracy = 0.829185

End of testing.

(a) (b)

Figure 10: Samples of a training report �le format (a) and a test report �le format (b).
The comment lines provide experimental environment information about the training and
test experiments. They are automatically generated by calling various GNU C functions.
They are crucial for replicating experimental results. In the data area, both intermediate
information and �nal results are recorded. This information can be used to analyze the
convergence properties of the training process and to study the statistical signi�cance of
the test experiment results. A detailed description of each column entry can be found in
Figure 3(b) and Figure 4(b).

4. After the optimal objective function parameter vector p̂A has been found, the page
segmentation algorithm is evaluated on a given test dataset S. Figure 7(b) shows
the architecture of the test procedure. The test dataset S is speci�ed in the test
protocol parameter data structure. Performance metric � is computed in module
B. Note that module C here has the same architecture as module C in Figure 7(a).
The computation of the �nal performance value � is represented in module �: Users
can de�ne their own � function by changing the Bench, BenchScoring, Compute
Average Score, and � modules in Figure 7(b). This step generates a test report �le
(ter) which records a performance score for each image in the test dataset as well as
a �nal average performance score over all images in the test dataset. Figure 10(b)
shows a sample test report �le.

5. The statistical analysis of the test experimental results can be conducted using a
standard statistics software package such as S-PLUS [4] or SPSS [6].

10

4.3 Algorithm Calling Mode in the Segmentation Algorithm Module

An important feature of the PSET package is that there are two page segmentation
algorithm calling modes: function call and shell call. If the source code of a segmentation
algorithm is available as a function, the user can link the function into the training and
testing modules. In many cases, however, source code of a segmentation algorithm is not
available, but executable code is. In such cases the shell calling mode can be used to run
the segmentation algorithm from within the training or testing module. Furthermore, if
a segmentation algorithm source code is not well debugged, e.g., if it leaks memory after
each function call, the leaked memory can accumulate after many function calls and can
�nally cause algorithm crash at some point. The shell call mode is a good solution to
this problem since in this case the executable code is used, and after each call all leaked
memory is freed. The disadvantage of the shell call mode is that it can be slower than
the function call mode. Figure 12 shows the architecture of the software implementation
of these two calling modes. A shell �le is required in the page segmentation algorithm
shell call mode. A sample shell �le is shown in Figure 11.

#! /bin/sh

Docstrum -t $1 -p $2 -u $3 -d $4 $5 $6 $7

Figure 11: A sample shell �le.

Call Mode?
Shell CallFunction Call

Generate
Shell Command

Shell
Command

sh_c
Seg

ExcutableSeg Function

Document
Image

Segmentation
Alg. Parameter
Data Structure

Experimental
Parameters

Segmentation
Algorithm
Shell File

(sh)

Segmentation

(dafs)
Result

(TIF)

Figure 12: Page segmentation algorithm calling modes: function call and shell call. The
left half represents the function calling mode and the right half represents the shell
calling mode. The shell calling mode can be used only when the algorithm executable is
available; otherwise the function calling mode can be used. Note that the executable is
called by the function sh c.

5 Hardware and Software Requirements

The PSET package has been developed in ANSI C on SUN Ultra 1, 2, and 5 workstations
running the Solaris 2.6 operating system. The compiler used was GNU gcc 2.7.2. Two

11

public-domain libraries, DAFS and TIFF, were used in PSET and have been included
in the distribution. The DAFS data structure library [7] was used for manipulating
intermediate datatypes and the TIFF library [2] was used for image I/O.

6 Future Work

We are currently generalizing the PSET package to include i) other metrics, ii) other
training/optimization algorithms, and iii) non-text region evaluation. Once the package
is in the public domain, we expect that the international community will add other
segmentation algorithms to the package. We are also porting the package to the Linux
platform. A visualization tool called TRUEVIZ [10] that can display the segmentation
and evaluation results of our PSET package is under development. For example, di�erent
types of errors can be visualized in various colors. TRUEVIZ can also be used for
creating groundtruth for segmentation. Furthermore, we are developing an XML-based
representation for zone groundtruth and intend to migrate to this representation from
the current DAFS representation.

7 Summary

We have described the architecture and the �le formats of a page segmentation evaluation
toolkit (PSET). The overall architecture and the �le formats were described to illustrate
two major functionalities of the PSET package: i) automatically train a given page
segmentation algorithm on a given training dataset and ii) evaluate the page segmentation
algorithm with the optimal parameters found in i) on a given test dataset. The details
of the architecture and samples of �le formats were then described as an implementation
of our �ve-step performance evaluation methodology. This paper is intended to assist
users in understanding, using, updating and modifying the PSET package. It will also
aid programmers who intend to add new algorithm modules to the package and interface
it with other software tools.

A Textline-Based Error Measures and Error Metrics

In the following sections, we de�ne page segmentation, a set of textline-based error mea-
surements, and a performance metric that we used in our previous evaluation of page
segmentation algorithms [14, 13], These de�nitions are based on set theory and math-
ematical morphology [9]. We then de�ne a general metric that users can customize for
their individual tasks.

A.1 Page Segmentation De�nition

Let I be a document image, and let G be the groundtruth of I. Let Z(G) = fZG
q ; q =

1; 2; : : : ;#Z(G)g be a set of groundtruth zones of document image I where # denotes the
cardinality of a set. Let L(ZG

q) = flGqj; j = 1; 2; : : : ;#L(ZG
q)g be the set of groundtruth

textlines in groundtruth zone ZG
q . Let the set of all groundtruth textlines in document

image I be L = [
#Z(G)
q=1 L(ZG

q). Let A be a given segmentation algorithm, and SegA(�; �) be

12

the segmentation function corresponding to algorithm A. Let R be the segmentation re-
sult of algorithm A such that R = SegA(I;pA) where Z(R) = fZR

k jk = 1; 2; : : : ;#Z(R)g.
Let D(�) � Z2 be the domain of its argument. The groundtruth zones and textlines

have the following properties: 1) D(ZG
q) \ D(ZG

q0) = � for ZG
q ; Z

G
q0 2 Z(G) and q 6= q0,

and 2) D(lGi) \D(lGi0) = � for lGi ; l
G
i0 2 L and i 6= i0.

A.2 Error Measurements and Metric De�nitions

In this section, we de�ne four error measurements and a metric. Let TX; TY 2 Z+[f0g be
two length thresholds (in pixels) that determine if the overlap is signi�cant or not. Each
of these thresholds is de�ned in terms of an absolute threshold and a relative threshold.
The absolute threshold is in pixels and the relative threshold is a percentage. TX and TY
are de�ned as follows:

TX = minfHPIX; (100 �HTOL) � h=100g (1)

TY = minfV PIX; (100 � V TOL) � v=100g (2)

where HPIX and V PIX are the the two thresholds in pixels, HTOL and V TOL are
the two thresholds in percentages, and h; v are the minimum width and height (in
pixels) of two regions that are tested for signi�cant overlap. Users must specify the
HTOL; V TOL;HPIX and V PIX parameter values in the benchmark algorithm pa-
rameter �le (bpr). Figure 13(b) shows a sample benchmark algorithm parameter �le.

The Textline-Based Benchmark
Algorithm Parameters

HTOL = 90
VTOL = 80
HPIX = 11
VPIX = 8

weight �le

wSpl = 0
wMrg = 0
wMis = 0
wFA = 0
wSplLine = 1
wMrgLine = 1
wMisLine = 1
wFAZone = 0

(a) (b)

Figure 13: Samples of a benchmark algorithm parameter �le (bpr) (a) and a weight �le
(wgt) (b).

Let E(TX; TY) = fe 2 Z2j � TX � X(e) � TX ;�TY � Y (e) � TY g be a region of a
rectangle centered at (0; 0) with a width of 2TX +1 pixels, and a height of 2TY +1 pixels
where X(�) and Y (�) denote the X and Y coordinates of the argument, respectively.
We now de�ne two morphological operations: dilation and erosion [9]. Let A;B � Z2.
Morphological dilation of A by B is denoted by A � B and is de�ned as A � B =
fc 2 Z2jc = a+ b for some a 2 A; b 2 Bg : Morphological erosion of A by B is denoted
by A	B and is de�ned as A	B = fc 2 Z2jc+ b 2 A for every b 2 Bg :

We now de�ne three types of textline based error measurements:
1) Groundtruth textlines that are missed:

CL =
n
lG 2 LjD(lG)	 E(TX; TY)

13

� ([ZR2Z(R)D(Z
R))c

o
,

2) Groundtruth textlines whose bounding boxes are split:

SL =
n
lG 2 Lj(D(lG)	 E(TX; TY)) \D(ZR) 6= �;

(D(lG) 	E(TX ; TY)) \ (D(ZR))c 6= �;

for some ZR 2 Z(R)
o
,

3) Groundtruth textlines that are horizontally merged:

ML =
n
lGqj 2 Lj9l

G
q0j0 2 L; ZR 2 Z(R); q 6= q0 ,

ZG
q ; Z

G
q0 2 Z(G) such that

(D(lGqj)	 E(TX; TY)) \D(ZR) 6= �;
(D(lGq0j0)	 E(TX ; TY)) \ D(ZR) 6= �;
((D(lGqj)	 E(0; TY))� E(1; 0)) \D(ZG

q0) 6= �;

((D(lGq0j0)	 E(0; TY))� E(1; 0)) \D(ZG
q) 6= �

o
:

4) Noise zones that are falsely detected (false alarm):

FL =
n
ZR 2 Z(R)jD(ZR) � ([lG2L(D(l

G)	 E(Tx; TY)))
c
o

Let the number of groundtruth error textlines be #fCL [SL [MLg (mis-detected, split,
or horizontally merged), and let the total number of groundtruth textlines be #L. We
de�ne the performance metric �(I;G;R) as textline accuracy:

�(I;G;R) =
#L �#fCL [SL [MLg

#L
:

In the PSET package, we also de�ne some other error measurements. Table 2 shows
the error measurements, the metric de�ned in the PSET package, and the corresponding
symbols used in the above discussion.

Table 2: Summary of error measurements and the corresponding symbols de�ned in this
section.

Error Measure De�ned Equivalent Term Description
in the PSET package in this Section
nSpl none The number of split errors.
nMrg none The number of horizontal merge errors.
nFA #FL The number of false alarm errors.
nSplL #SL The number of split textlines.
nMrgL #ML The number of horizontally merged textlines.
nMisL #CL The number of mis-detected textlines.
nErrL #fCL [SL [MLg The number of error textlines (textlines that are

either split, horizontally merged or mis-detected).
nGtl #L The number of groundtruth textlines.

In general, the performance metric can be any function of the error measures shown
in Table 2. In the PSET package, a performance metric can be de�ned as a weighted
sum of these error measures in function BenchScoring. Let wSpl be the weight of the
error measurement nSpl: The weights of other error measurements are de�ned similarly.
A general performance metric is de�ned as follows:

14

N = wSpl � nSpl + wMrg � nMrg + wFA � nFA+ wSplL � nSplL

+wMrgL � nMrgL + wMisL � nMisL;

D = wSpl + wMrg + wFA+ wSplL + wMrgL + wMisL;

��(I;G;R) =
N

D
: (3)

Figure 14 gives a set of possible errors as well as an experimental example.

Horizontally
Merged

Horizontally
Split

Vertically
Split on

Bounding
Box

Vertically
Merged

False Alarm

Vertically
Split

Missed
Detection

(a) (b)

(c) (d)

Figure 14: (a) This �gure shows a set of possible textline errors. Solid-line rectangles
denote groundtruth zones, dashed-line rectangles denote OCR segmentation zones, dark
bars within groundtruth zones denote groundtruth textlines, and dark bars outside solid
lines are noise blocks. (b) A document page image from the University of Washington III
dataset with the groundtruth zones overlaid. (c) OCR segmentation result on the image
in (b). (d) Segmentation error textlines. Notice that there are two horizontally merged
zones just below the caption and two horizontally merged zones in the middle of the
text body. In OCR output, horizontally split zones cause reading order errors whereas
vertically split zones do not cause such errors.

Acknowledgement

We would like to thank Dr. Kise of Osaka Prefecture University for providing us with a
software implementation of his segmentation algorithm and modifying it for our evalua-

15

tion purposes; Glenn van Doren of the Department of Defense for supporting this e�ort;
and Dr. Azriel Rosenfeld of the University of Maryland for his comments.

This research was funded in part by the Department of Defense under Contract MDA
9049-6C-1250, Lockheed Martin under Contract 9802167270, the Defense Advanced Re-
search Projects Agency under Contract N660010028910, and the National Science Foun-
dation under Grant IIS9987944.

References

[1] DARPA Broadcast News Workshop, Herndon, VA, Feburary 1999.
http://www.itl.nist.gov/iaui/894.01/publications/darpa99/index.htm.

[2] Aldus Corporation. TIFF. ftp://sgi.com/graphics/tiff/.

[3] A. D. Bagdanov. The fourth annual test of OCR accuracy. In A. D. Bagdanov, editor,
Annual Report. Information Science Research Institute, University of Nevada, Las
Vegas, NV, 1995.

[4] R. A. Becker, J. M. Chambers, and A. R. Wilks. The New S Language. Wadsworth
& Brooks/Cole, Paci�c Grove, CA, 1988.

[5] D. Dori, I. Phillips, and R. M. Haralick. Incorporating documentation and inspection
into computer integrated manufacturing: An object-process approach. In S. Adiga,
editor, Applications of Object-Oriented Technology in Manufacturing. Chapman &
Hall, London, UK, 1994.

[6] J. J. Foster. Data Analysis Using SPSS for Windows | A Beginner's Guide. SAGE
Publications, London, UK, 1998.

[7] T. Fruchterman. DAFS: A standard for document and image understanding. In
Proceedings of Symposium on Document Image Understanding Technology, pages
94{100, Bowie, MD, October 1995.

[8] C. Ghezzi, M. Jazayeri, and D. Mandrioli. Software Engineering. Prentice Hall,
Englewood Cli�s, NJ, 1991.

[9] R. M. Haralick and L. G. Shapiro. Computer and Robot Vision. Addison-Wesley,
Reading, MA, 1992.

[10] T. Kanungo, C. H. Lee, J. Czorapinski, and I. Bella. TRUEVIZ: A
groundtruth/metadata editing and visualizing toolkit for OCR. In Proceedings of
SPIE Conference on Document Recognition and Retrieval, San Jose, CA, January
2001.

[11] K. Kise, A. Sato, and M. Iwata. Segmentation of page images using the area Voronoi
diagram. Computer Vision and Image Understanding, 70:370{382, 1998.

16

[12] S. Mao and T. Kanungo. A methodology for empirical performance
evaluation of page segmentation algorithms. Technical Report CAR-
TR-933, University of Maryland, College Park, MD, December 1999.
http://www.cfar.umd.edu/~kanungo/pubs/trsegeval.ps.

[13] S. Mao and T. Kanungo. Automatic training of page segmentation algorithms:
An optimization approach. In Proceedings of International Conference on Pattern
Recognition, pages 531{534, Barcelona, Spain, September 2000.

[14] S. Mao and T. Kanungo. Empirical performance evaluation of page segmentation
algorithms. In Proceedings of SPIE Conference on Document Recognition and Re-
trieval, pages 303{314, San Jose, CA, January 2000.

[15] G. Nagy, S. Seth, and M. Viswanathan. A prototype document image analysis
system for technical journals. Computer, 25:10{22, 1992.

[16] L. O'Gorman. The document spectrum for page layout analysis. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 15:1162{1173, 1993.

[17] T. Pavlidis and J. Zhou. Page segmentation and classi�cation. Graphical Models
and Image Processing, 54:484{496, 1992.

[18] E. M. Voorhees and D. K. Harman, editors. The Seventh Text REtrieval
Conference (TREC 7). National Institute of Standards and Technology, 1998.
http://trec.nist.gov/pubs.html.

17

