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ABSTRACT

Document page segmentation is a crucial preprocessing step in Optical Character Recognition (OCR) system. While
numerous segmentation algorithms have been proposed, there is relatively less literature on comparative evaluation
| empirical or theoretical | of these algorithms. We use the following �ve step methodology to quantitatively
compare the performance of page segmentation algorithms: 1) First we create mutually exclusive training and test
dataset with groundtruth, 2) we then select a meaningful and computable performance metric, 3) an optimization
procedure is then used to automatically search for the optimal parameter values of the segmentation algorithms,
4) the segmentation algorithms are then evaluated on the test dataset, and �nally 5) a statistical error analysis
is performed to give the statistical signi�cance of the experimental results. We apply this methodology to �ve
segmentation algorithms, three of which are representative research algorithms and the rest two are well-known com-
mercial products. The three research algorithms evaluated are: Nagy's X-Y cut, O'Gorman's Docstrum and Kise's
Voronoi-diagram-based algorithm. The two commercial products evaluated are: Caere Corporation's segmentation
algorithm and ScanSoft Corporation's segmentation algorithm. The evaluations are conducted on 978 images from
the University of Washington III dataset. It is found that the performance of the Voronoi-based, Docstrum and
Caere's segmentation algorithms are not signi�cantly di�erent from each other, but they are signi�cantly better
than ScanSoft's segmentation algorithm, which in turn is signi�cantly better than the performance of the X-Y cut
algorithm. Furthermore, we see that the commercial segmentation algorithms and research segmentation algorithms
have comparable performances.

Keywords: Document page segmentation, OCR, comparative evaluation, performance metric, X-Y cut, Docstrum,
Voronoi diagram, performance evaluation, statistical signi�cance, paired model.

1. INTRODUCTION

Page Segmentation is the process of dividing a document image into homogeneous zones. The accuracy of most
Optical Character Recognition (OCR) systems is very sensitive to the page segmentation accuracy. While many
segmentation algorithms have been proposed in the literature, relatively few researchers have addressed the issue of
quantitative evaluation of segmentation algorithms. In fact, a recent workshop1 was devoted to address issues related
to page segmentation and another was devoted to empirical performance evaluation.2

A brief survey of Page Layout Analysis can be found in Gorman and Kasturi.3 Several page segmentation
performance evaluation methods have been proposed in the past. Kanai et al.4 proposed a metric that is a weighted
sum of the number of edit operations (insertions, deletions and moves). The advantage of this method is that it
requires only ASCII text groundtruth and hence does not require zone or text-line bounding-box groundtruth. The
limitations of this method are that it can not specify the error location on the image, it is dependent on the OCR
engine's recognition accuracy, and the metric can not be computed for the languages for which no OCR engine is
available. Rice, Jenkins and Nartker5 conducted a comparative evaluation of automatic zoning accuracy of four
commercial OCR products using this performance metric. Vincent et al.6{8 propose various bitmap-level region-
based metrics. The advantages of this method are that it can evaluate both text regions and non-text regions, it
is independent of zone representation schemes, the errors can be localized and categorized, and the performance
metric can be customized by the users. A limitation of this method is that the metric is dependent on pixel noise.
Liang, Phillips and Haralick9 describe a region-area-based metric. The overlapping area of a groundtruth zone and



segmentation zone is used to compute its performance metric. In computer vision literature, Hoover et al.10 presented
a methodology for evaluating range image segmentation algorithms. None of the evaluation methodologies mentioned
above provide statistical signi�cance associated with the results.

In this article, we propose a text-line based performance evaluation method. A performance metric is computed
as segmentation accuracy of text-lines, i.e., the ratio of the number of correctly segmented groundtruth text-lines
and the total number of groundtruth text-lines. The incorrectly segmented text-lines are de�ned as the horizontally
merged, horizontally split and missed groundtruth text-lines because these error contribute the most OCR error. The
overlapping area and the overlapping direction between groundtruth text-line bounding box and segmentation zone
bounding-box are used to determine if the groundtruth text-line is correctly segmented or not. This method ignores
the white space and noise regions outside text zone bodys since they contribute little OCR error. We also propose an
performance evaluation methodology that is suitable for both black-box and white-box page segmentation algorithms.
In this methodology, a parameter optimization procedure is conducted for each of three research algorithms, a paired
model based statistical analysis is performed to provide the con�dence interval of performance index and algorithm
timing for each algorithm and �nally an error analysis is conducted for better interpreting the functionality of
algorithms.

This paper is organized as follows. In Section 2 we outline our performance evaluation methodology. In Section 3
we identify various types of OCR segmentation errors and de�ne a performance metric based on these error mea-
surements. In Section 4, the segmentation algorithms that we evaluated are described. In Section 5 we describe the
experimental protocol used to conduct the training and testing experiments. In Section 6 we report experimental
results. Finally, in Section 7, we give our conclusions.

2. PERFORMANCE EVALUATION METHODOLOGY

A large and representative dataset is desirable in any performance evaluation task in order to give an objective
performance measurement of the algorithms. A typical page segmentation algorithm has a set of parameters that
a�ect its performance index. This performance index is usually a user-de�ned performance metric that measures an
aspect of the algorithm that the user is interested in. In order to evaluate a page segmentation algorithm on a speci�c
dataset, a set of optimum parameters has to be used. The optimum parameter set is a function of the given dataset,
the groundtruth and the performance metric. The set of optimum parameters for one dataset could be a non-optimal
parameter set for another dataset. Hence, the choice of parameter is crucial in any performance evaluation task.
When the size of dataset gets very large, a parameter set training on the whole dataset becomes computationally
prohibitive and therefore a representative sample dataset of much smaller size should be used as a training dataset.
After the training step, the page segmentation algorithms with the corresponding optimal parameters should be
evaluated on a test dataset that is di�erent from the training set. Finally, in order to interpret the signi�cance of the
experimental results, a statistical error analysis should be performed. The steps for our methodology for evaluating
page segmentation algorithms are as follows:

1. Create mutually exclusive training and test datasets with groundtruth such that each set is a representative
sample of the whole dataset.

2. De�ne meaningful and computable performance metrics.

3. Automatically �nd the optimal parameter setting for each selected segmentation algorithm using the training
dataset.

4. Evaluate the segmentation algorithms with optimized parameters on the test dataset.

5. Perform a statistical error analysis to provide the signi�cance of the evaluation results.

The above methodology can be applied to any segmentation algorithm that has free parameters. If the algorithm
does not have free parameters, as is the case with many commercial algorithms, we do not perform the training step.



3. ERROR MEASUREMENTS AND METRICS

To quantitatively evaluate algorithms, a meaningful and computable metric is essential. While di�erent metrics may
re
ect researchers' di�erent interest in their problems, a comprehensive error measurement is also desirable. Users can
choose the error measurement of interest and construct computable metrics based on these error measurements, e.g.,
weighted sum of the error measurements. In order to avoid the shortcomings of the evaluation methods mentioned
in the introduction, we de�ne a a set of error measurements based on text-lines and propose a performance metric
based on these error measurements. The error measurements we use are as follows:

lhm number of horizontally merged text-lines lvm number of vertically merged text-lines
lhs number of horizontally split text-lines lvs number of vertically split text-lines
nfl number of false-alarm blocks lmi number of miss-detected text-lines
lbs number of text-lines nhs number of horizontal splits

whose bounding box is vertically split that happen on text-lines
nhm number of horizontal merges ler number of incorrectly segmented text-lines

that happen between text-lines (error type de�ned by users)

These error measurements account for most text-line errors. Figure 1 gives a set of possible errors as well as an
experimental example.

In the paper, we de�ne the performance metric as Text-line Accuracy = (lgt�ler)=lgt, where lgt is the total number
of groundtruth text-lines. We de�ne ler as the number of groundtruth text-lines that are horizontally split/vertical
split on the bounding boxes (HVBB), horizontally merged or miss-detected since these errors contribute the most
error to OCR recognition result. In this metric, no background regions is involved except groundtruth text-lines
themselves. This performance metric only applies to text regions and needs text-line groundtruth for its computation.

Once we have the performance metric value for the algorithms being tested, we want to know if one algorithm is
better than the other and if the performance metric di�erence is statistically signi�cant. We use the paired model
approach proposed by Kanungo, Marton and Bulbul11 in their evaluation of Arabic OCR products to obtain inference
about di�erence in the means of page segmentation algorithm performance. By using this model, the correlation of
data observed on a same document image is taken into account in computing the con�dence intervals. We assume
that the performance results on di�erent pages and page segmentation algorithms are statistically independent. For
the �ve algorithms tested, we compared the di�erence of performance metric means and processing time mean of
each possible algorithm pair and report if the di�erence is statistically signi�cant or not.

4. PAGE SEGMENTATION ALGORITHMS

Page segmentation algorithms can be categorized into three classes, top-down approach, bottom-up approach and
hybrid approach. Docstrum by O'Gorman,12 Voronoi-diagram-based algorithm by Kise13 and run-length smearing
algorithm by Wahl, Wong and Casey14 are bottom-up algorithms while X-Y cut by Nagy15,16 and the shape-directed-
covers-based algorithm by Baird17 are top-down algorithms. We implemented O'Gorman's Docstrum algorithm and
Nagy's X-Y cut algorithm. These two and Kise's Voronoi-diagram-based algorithm are representative top-down and
bottom-up approaches. Two commercial, state-of-the-art, page segmentation algorithms are also evaluated. One is
Caere's segmentation algorithm and the other is ScanSoft's segmentation algorithm.

4.1. The X-Y Cut Page Segmentation Algorithm

The X-Y cut segmentation algorithm15,16 is a tree-based top-down algorithm. The root node of the tree represents
the entire document page D, an interior node represents a rectangle on the page, and all the leaf nodes together
represent the �nal segmentation. While this algorithm is easy to implement, it can only work on document pages
with Manhattan layout and rectangular zones. The algorithm works as follows:

1. Create the horizontal and vertical pre�x sum tables HX and HY as follows:
HX [i][j] = #fpk 2 P jX(pk) = j; Y (pk) � i; I(pk) = 1g;
HY [i][j] = #fpk 2 P jX(pk) � j; Y (pk) = i; I(pk) = 1g;
where P = fpkg; k = 1; 2; : : : ; n is the set of pixels in the image and I(pk) is the binary indicator function.



2. Compute X and Y black pixel projection pro�le histograms at each node as follows:
HISX [i] HX [Y2(Z)][i]�HX [Y1(Z)][i];
HISY [j] HY [j][X2(Z)]�HY [j][X1(Z)];
where Z is the zone corresponding to the current node, (X1(Z); Y1(Z)) and (X2(Z); Y2(Z)) are upper-left and
lower-right points of the zone.

3. Obtain the widest zero valleys VX and VY in the X and Y projection pro�le histograms HISX and HISY . If
VX > TX or VY > TY ; where TX and TY are two width thresholds, split at the mid-point of the wider of VX
and VY . Otherwise, stop splitting.

4. When a split decision is made, generate two child nodes. Shrink each child zone bounding box until it \tightly"
encloses the the zone body. Noise removal thresholds Tn

X and Tn
Y are then used to classify and remove back-

ground noise pixels. Since noise pixels in the background are assumed to be distributed uniformly, the noise
removal thresholds Tn

X and Tn
Y for a particular node are scaled linearly based on current zone's width and

height.

5. Visit each newly generated zone until none of leaf node can be split further.

Pseudo-code for our implementation of the X-Y cut algorithm can be found in our forthcoming technical report.18

4.2. The Docstrum Page Segmentation Algorithm

Docstrum12 is a bottom-up page segmentation algorithm that can work on document pages with non-Manhattan
layout and arbitrary skew angles. However, this algorithm only applies to the segmentation of text regions. More-
over, it does not perform well when the document page contains too many joined characters and the estimates of
inter-character spacing, inter-line spacing and orientation angle become inaccurate when documents contain sparse
characters.

The basic steps of the Docstrum segmentation algorithm are shown below:

1. Obtain connected components Cis using a space-e�cient two-pass algorithm.19

2. Remove small and big noise or non-text connected components using low and high size thresholds l and h:

3. Separate Cis into two group, one with dominant characters and another with characters in titles and section
headings. A parameter fd controls the clustering.

4. Find the K nearest neighbors, NNK(i), of each Ci:

5. Compute the distance and angle of each Ci and its K nearest neighbors: (�ij ; �
i
j); such that j 2 NNK(i):

6. Compute within-line nearest-neighbor distance histogram from the following set W� :
W� = f�

i
jjj 2 NNK(i); and � �h � �ij � �hg; where �h is the horizontal angle tolerance threshold.

Estimate the within-line inter-character spacing cs as the location of the peak in the histogram.

7. Compute between-line nearest-neighbor distance histogram from the set B� :
B� = f�ij jj 2 NNK(i); and 90� � �v � �ij � 90� + �vg; where �v is the vertical angle tolerance threshold.
Estimate the inter-line spacing ls as the location of the peak in the histogram.

8. Perform transitive closure on within-line nearest neighbor pairings to obtain text-lines Lis using within-line
nearest neighbor distance threshold Tcs = ft � cs.

9. Perform transitive closure on Lis to obtain structural blocks or zones Zis using parallel distance threshold
Tpa = fpa � cs and perpendicular distance threshold Tpe = fpe � ls. The parallel and perpendicular distances
are computed as \end{end" distance, not \centroid{centroid" distance.

Pseudo-code for our implementation of the X-Y cut algorithm can be found in our forthcoming technical report.18 In
our implementation, we did not estimate orientation since all pages in the dataset have been deskewed. Furthermore,
we used a resolution of 1 pixel/bin for constructing the within-line and between-line histograms, and did not perform
any smoothing of these histograms.



4.3. The Voronoi-Diagram-Based Page Segmentation Algorithm

Kise's segmentation algorithm13 is also a bottom-up algorithm based on Voronoi diagram. This method can work
on document pages that have non-Manhattan layout, arbitrary skew angles as well as non-linear text-lines. A set
of connected line segments are used to bound text zones. Since we evaluate all algorithms on document pages
with Manhattan layouts, this algorithm has been modi�ed to generate rectangular zones. This algorithm tends to
fragment non-text regions (�gures, tables and halftone images) and text zones with irregular font size and spacings.
It assumes that text regions are dominant on a page and the inter-character and inter-line spacing within a text
region is uniform. The algorithm steps are as follows:

1. Label connected components. A fast labeling procedure based on border following is used. The 8-connected
components and sample points on their border are simultaneously obtained from the input image. The algorithm
parameter sr controls the number of sample points used.

2. Remove noise connected components using maximum noise zone size threshold nm; maximumwidth threshold
Cw; maximum height threshold Ch; and maximum aspect ratio threshold Cr for all connected components.

3. Generate Voronoi diagram. Voronoi diagram for each connected component is generated using the sample
points on its border.

4. Delete super
uous Voronoi edges. Super
uous Voronoi edges are deleted to obtain text zone boundaries ac-
cording to the following criteria. Let E be the Voronoi edge between two connected components Ci and Cj

and d(E) be the minimum distance between any two sample points from Ci and Cj: Let Td1 be the estimate
of inter-character spacing, Td2 be the estimate of the inter-line spacing plus a margin controlled by a factor fr:
De�ne ar(E) as the area ratio maxfArea(Ci);Area(Cj)g=minfArea(Ci);Area(Cj)g and Ta as the threshold of
the largest area ratio between the characters of the same font and size. If a Voronoi edge satis�es d(E)=Td1 < 1
or d(E)=Td2 + ar(E)=Ta < 1, it is deleted. In this criteria, the �rst inequality indicates that the Voronoi edges
between Ci and Cj with a spacing smaller than the estimated inter-character spacing are deleted, regardless
of their area ratio. The second inequality implies that we do not delete the Voronoi edge if 1)if Ci and Cj

come from di�erent text zones that have larger spacing than inter-line spacing plus a margin, or 2) if one is a
character and the other is a non-text object that has very di�erent area from the character.

5. Remove noise zones using minimum area threshold Az for all zones, and using minimum area threshold Al;
and maximum aspect ratio threshold Br for the zones that are vertical and elongated.

4.4. Commercial Segmentation Algorithms

Two commercial products, Caere's segmentation algorithm20 and ScanSoft's segmentation algorithm,21,22 are se-
lected for evaluation. They are representative state-of-art commercial products. Both are black-box algorithms with
no free parameters.

5. EXPERIMENTAL PROTOCOL

In this section we provide the details of our experimental setup | datasets used, algorithm parameter values,
hardware and software environments etc. The experiment we conduct has a training phase and a testing phase for
the three research algorithms, and only a testing phase for the two commercial products.

The machines used for training and testing are Sun workstations running Solaris 2.6 operating system. We used
text-line accuracy as our performance metric, for each document page, we obtained a performance metric value, we
then compute a average performance metric value over all document pages in the training dataset or test dataset
and report it as the �nal algorithm performance index.



5.1. Dataset Speci�cation

We select University of Washington Dataset23 for the performance evaluation task. All pages in the dataset are
journal pages over a large variety of journals from diverse subject areas and publishers. The dataset also has
geometric text-line and zone groundtruth for each page. The text-line and zone groundtruth are represented by
non-overlapping rectangles. University of Washington III dataset has 1601 deskewed binary document images at 300
dpi resolution. We choose a subset of 978 pages that corresponds to the University of Washington I dataset pages
as our experimental dataset. We evaluate the chosen algorithms only on text regions. The non-text regions are
ignored in evaluation process. A training dataset of 100 document pages are randomly sampled from the selected
978 documents; the remaining 878 document pages are considered as the test dataset.

5.2. Parameter Speci�cation

We specify a parameter set for each of the three research algorithms, �x the ones that the corresponding algorithm
is insensitive to and only train the ones that the corresponding algorithm is sensitive to. The training procedure
is conducted on the 100-page training dataset. The machines we use are Ultra 1,2 and 5 Sun workstations running
Solaris 2.6 operating system. After the training step, a set of optimal parameter values are found for each research
algorithm. Since the two commercial products are black-box algorithms without any parameters, we do not perform
training step for them.

5.2.1. X-Y Cut Algorithm Parameters

The X-Y cut algorithm has four free parameters. Since the algorithm is very sensitive to all the four parameters, we
search for the optimal value for each of the four parameters over the ranges given below,

1. X widest zero valley width threshold TC
X : f0-400 pixelsg; 2. Y widest zero valley width threshold TC

Y : f0-400 pixelsg;
3. Vertical noise removal threshold Tn

X : f0-400 pixelsg; 4. Horizontal noise removal threshold Tn
Y : f0-400 pixelsg.

5.2.2. Docstrum Algorithm Parameters

O'Gorman in his paper speci�es eight parameters for the Docstrum algorithm. We add two more: 1) superscript-
subscript character distance threshold factor for correctly handing text-line segmentation, and 2) character size
ratio threshold to separate larger characters from dominant characters. The algorithm is insensitive to six of the
parameters. We �x these six parameters as the follows: number of nearest connected components for clustering
K = 9; low connected component size-threshold l = 2 pixels; high connected component size-threshold h = 200
pixels; horizontal angle tolerance threshold �h = 30�; vertical angle tolerance threshold �v = 30�; superscript and
subscript character distance threshold factor fs = 0:4. The values for the parameters that the algorithm is sensitive
to were searched from the ranges given below:

1. Nearest neighbor threshold factor ft: f0-20g; 2. Parallel distance threshold factor fpa: f0-20g;
3. Perpendicular distance threshold factor fpe: f0-20g 4. Character size ration factor fd: f0-20g.

5.2.3. Voronoi-Diagram-Based Algorithm Parameters

Kise's algorithm has eleven free parameters and is insensitive to seven of them, six of which are related to removing
noise connected component and blocks. We �x the seven parameters as follows: maximumheight and width thresholds
of a connected components Ch = 500 pixels and Cw = 500 pixels, maximum connected component aspect ratio
threshold Cr = 5; minimum area threshold of a zone Az = 50 pixels2 for all zones, and minimum area threshold
Al = 40000 pixels and maximum aspect ratio threshold Br = 4 for the zones that are vertical and elongated. The
last parameter is the size of the smoothing window sw = 2: The optimal values for the other four parameters are
searched from the following ranges recommended by Kise:

1. sampling rate sr: f4-7g; 2. Max size threshold of noise connected component nm: f10-40g;
3. Margin control factor for Td2 fr: f0.01-0.5g; 4. Area ratio threshold ta: f40-200g.



5.3. Algorithm Training

The parameters that segmentation algorithm are sensitive to are automatically selected by training the algorithm
on the 100-page training dataset. A downhill simplex optimization procedure24 is used to search for the optimal
parameter value for each segmentation algorithm. A starting point in the parameter space is necessary for the
optimization procedure. We choose �ve di�erent starting points within the reasonable working parameter subspace for
each research algorithm and obtained �ve locally optimal results. Then we select the parameter values corresponding
to the maximum result as the optimal parameter value. The optimization procedure details are described in our
forthcoming technical report.18

5.4. Algorithm Testing

All �ve algorithms are tested on 878 pages test dataset. In order to be able to compare the timing information of
each algorithm, we test them using their optimized parameters only on a Ultra 5 Sun workstation running Solaris 2.6
operating system. The CPU speed reported by the \fpversion" UNIX command is 333 MHz. The two commercial
products are run on Gateway PC with a 400 MHz Pentium II CPU running Windows 95 operating system. We
normalize the PC timing to UNIX timing using the relation tUNIX = 400 � tPC=333 for comparison with the timing
of the research algorithms.

6. EXPERIMENTAL RESULTS AND DISCUSSION

6.1. Training Results

Three research algorithms are trained on 100-page training dataset. Table 1 reports the optimum parameters,
optimum performance index (text-line accuracy) value and training time for each research algorithm. The �ndings
from training results for each research algorithm are summarized as the following:

1. Kise's Area-Voronoi-diagram-based algorithm: sr = 6 implies that for every six pixels on a connected compo-
nent contour we should take one sample. Intuitively the smaller this parameter is, the more sample points we
get and hence the better estimation can be obtained, this result indicts this parameter has interaction with
other parameters, nm = 16 implies that we should not delete any connected component with a size (perime-
ter) greater than 16 pixels, otherwise we may delete small characters as noise blocks, fr = 0:08 implies that
we should choose a very conservative interline spacing threshold, this indicates there is a large variation of
interline spacing among test dataset pages, ta=116 implies that the non-text connected components are well
separated from text components in training dataset pages, we can choose a larger value safely, an in�nite value
for this parameter indicates that we can select voronoi edges based only on connected component distance.
This algorithm gives the best performance index for the training dataset.

2. X-Y cut algorithm: Tn
X = 61 and Tn

Y = 8 indicate that vertical cut is generally longer than horizontal cuts,
hence a smaller noise removal threshold is needed in horizontal direction. TC

X = 34 and TC
Y = 42 imply that

the vertical gap and horizontal gap between text zones are generally similar, the vertical gap is slightly wider
than the horizontal gap. This algorithm gives the poorest performance index. By eyeballing a large amount
of training results, we found that this algorithm is sensitive to the presence of non-text region such as tables,
�gures and halftones, also the thresholds becomes invalid for pages with thick noise bars on the edges.

3. Docstrum algorithm: ft = 2:545 indicates that the nearest neighbor distance threshold Tcs should be 2.545
times of estimated intercharacter spacing cs, fpa = 2:336 indicates that parallel distance threshold Tpa between
ends of text-lines for blocking should be 2.336 times of estimated inter-character spacing cs, fpe = 0:613
indicates that the perpendicular distance threshold Tpe between ends of text-lines should be 0.613 time of
estimated inter-line spacing ls, and fd = 8:050 implies that the size ratio between the dominant character
group and larger character group should be 8.05. These values indicate that there is a fair amount of variation
in character size, text-line spacings. Also since the intercharacter and interline spacing estimation becomes
very inaccurate for sparse large character group, the size ratio threshold is large. This algorithm gives a similar
performance index as that of Kise's algorithm.



Table 1. Algorithm training results. For each algorithm we report the optimal parameters and the corresponding
optimal performance index value. The experiments are computationally quite intensive and training each algorithm
took 2-4 days.

Optimum Parameters Performance Index Training Time
(percent) (hours)

Voronoi sr=6, nm=16, fr=0.08, ta=116 95.21 78.41
Docstrum ft= 2.55, fpa=2.34, fpe=0.61, fd=8.05 95.06 54.03
X-Y cut TC

X = 34, TC
Y = 42, Tn

X = 61, Tn
Y = 8 (in pixels) 88.08 95.50

Table 2. Algorithm testing results and the corresponding 95% con�dence intervals. The average time per page is
also reported. The time taken by the two commercial products were normalized for the processor speed di�erences
between the PC and the SUN.

Performance Index Average Processing Time

(percent) (seconds)

Voronoi 94.38 � 0.78 4.71 � 0.09

Docstrum 93.88 � 1.03 9.60 � 0.22

X-Y cut 84.55 � 1.70 3.64 � 0.05

Caere 93.97 � 0.85 2.02 � 0.01, (normalized) 2.42 � 0.02

ScanSoft 87.29 � 1.35 3.13 � 0.04, (normalized) 3.76 � 0.05

6.2. Testing Results

All �ve algorithms are tested on 878-page test dataset with their corresponding optimum parameters. Table 2
reports the testing performance index (text-line accuracy) and average algorithm timing. Figure 2 gives a bar-chart
representation of the testing results for each evaluated algorithm.

From the testing results, we see that Voroni-based algorithm, Docstrum and the Caere's algorithm have similar
performance index and are better than that of ScanSoft's algorithm, which in turn is better than that of the X-Y
cut algorithm. Caere's segmentation algorithm has the least average processing time, Kise's algorithm, X-Y cut
and ScanSoft's segmentation algorithm have the similar average processing time. Docstrum has the most average
processing time. The connected component labeling we used for Docstrum may not be the optimumone and hence its
timingmay be further improved. For comparison purposes, an evaluator always likes to know if the performance index
and processing time di�erences between algorithms is statistically signi�cant or not, especially for those algorithms
with similar performance index values. This is addressed in the following subsection.

6.3. Statistical Analysis of Results

We employed a paired model11 to compare the performance index and testing time di�erence between each possible
algorithm pair, then compute their con�dence intervals. The analysis results for performance index and processing
timing are reported in a matrix in Table 3 and Table 4 respectively. If we denote Tij as the value of table cell at
ith row and jth column, Tij = ai � aj where ai is the performance index (algorithm timing) value of algorithm on
the ith row, aj is the performance index (algorithm timing) value of algorithm on the jth column. Note that the
normalized processing timing is used for two commercial products.

From Table 3, we can �nd that the performance indexes of Kise's algorithm, Caere's segmentation algorithm
and Docstrum are not statistically di�erent, but they are statistically better than those of ScanSoft's segmentation
algorithm and X-Y cut algorithms, the performance index of ScanSoft's segmentation algorithm is statistically better
than that of X-Y cut. From Table 4, we can �nd that all algorithms have statistically signi�cant processing time
from each other. From the least processing time to the most processing time, the algorithms are ranked as Caere's
segmentation algorithm, X-Y cut, ScanSoft's segmentation algorithm, Kise and Docstrum. For Docstrum, a better
connected component labeling algorithm can improve it timing performance.

6.4. Error Analysis

Error analysis is crucial to interpret the functionality of the evaluated algorithms. Di�erent algorithm has di�erent
weakness. Figure 3 shows error analysis results for each algorithm. X-Y cut has the most horizontally merged



Table 3. Paired model statistical analysis results on the di�erence between a pair of performance indexes (in
percent) and the corresponding 95% con�dence intervals. A (*) indicates that the di�erence is statistically signi�cant
at � = 0:05; and no (*) indicates that the di�erence is not signi�cant. We see that there is no signi�cant di�erence
between Voronoi, Docstrum and Caere algorithms. However this group is signi�cantly better than Scansoft, which
is inturn is better than XY-cut.

Caere Docstrum ScanSoft X-Y cut

Voronoi 0.41 � 0.86 0.49 � 0.97 7.09 � 1.36 (*) 9.82 � 1.76 (*)

Pval = 0:170082 Pval = 0:158157 Pval = 1:51512E � 23 Pval = 2:02491E� 26

Caere { 0.08 � 1.11 6.67 � 1.38 (*) 9.40 � 1.78 (*)

Pval = 0:443731 Pval = 1:26375E � 20 Pval = 4:14161E� 24

Docstrum { { 6.59 � 1.61 (*) 9.32 � 1.89 (*)

Pval = 1:69193E � 15 Pval = 2:12715E� 21

ScanSoft { { { 2.72 � 2.01 (*)

Pval = 0:0040104

Table 4. Paired model statistical analysis results on the di�erence in processing times (seconds) and the corre-
sponding 95% con�dence intervals. A (*) indicates the di�erence is statistically signi�cant at � = 0:05 and no (*)
implies the di�erence is not signi�cant. We see that from the least to the most averge processing time, the algorithms
are ranked as: Caere, X-Y cut, ScanSoft, Voronoi and Docstrum.

Caere Docstrum ScanSoft X-Y cut

Voronoi 2.29 � 0.08 (*) -4.89 � 0.15 (*) 0.95 � 0.10 (*) 1.07 � 0.07 (*)

Pval = 0 Pval = 0 Pval = 0 Pval = 0

Caere { -7.18 � 0.21 (*) -1.34 � 0.05 (*) -1.22 � 0.04 (*)

Pval = 0 Pval = 0 Pval = 0

Docstrum { { 5.84 � 0.23 (*) 5.95 � 0.19 (*)

Pval = 0 Pval = 0

ScanSoft { { { 0.12 � 0.07 (*)

Pval = 0:00038

text-line error rate. This occurs in pages that have thick and long noise blocks at the edges, which can not be cut
through. Many text regions under these noise blocks are merged together. The Voronoi-based algorithm has the
least such errors. This is partially due to the fact that the algorithm uses not only the connected component spacing
but also their area ratio to generate zone boundary, and hence few lines or noise blocks between text regions do
not e�ect the results. Since Docstrum only uses spacing information to block text regions, it has more horizontally
merged text-lines than that of the Voronoi-based algorithm. In the test dataset pages, there are titles with wide
inter-character and inter-word spacings, numbered text lists as well as text-lines with irregular character spacings.
These features make the spacing parameter estimation inaccurate in the Voronoi-based and Docstrum algorithms.
Both algorithms have about 3-4.5% HVBB split text-line error. The X-Y cut algorithm tends to cut text-lines such
as header, footer and author that are not aligned with text blocks. All three research algorithms have a small number
of missed text-lines. ScanSoft has the most HVBB split and miss-detected text-line error rates and the second most
horizontally merged text-line error rate. The Caere algorithm has the least HVBB split text-line error rate, the third
most horizontally merged text-line error rate and the second least miss-detected text-line error rate.

7. CONCLUSIONS

We proposed a performance evaluation methodology for evaluating page segmentation algorithms. Under this
methodology, we introduced a text-line based performance metric that has the following features: 1) independent
of shape of zones, 2) independent of OCR recognition error, 3) ignores the background information (white space,
salt and pepper noise etc.), 4) segmentation errors can be localized, and 5) quantitative evaluations on lower level
(e.g. text-line, word and character) segmentation algorithms can be readily achieved with little modi�cations. We
trained the three research algorithms on the training dataset and tested the trained research algorithms and the two
commercial algorithms on the test dataset. In training phase, a set of optimal parameter values is automatically
found for each research algorithm using the downhill simplex algorithm. A paired model statistical analysis is per-
formed on the experimental results to provide signi�cance levels for both performance index and algorithm timing



for each algorithm. The three research algorithms are analyzed in three error types. We found that the performance
of Voronoi, Docstrum and Caere's segmentation algorithm are not signi�cantly di�erent from each other, but they
are signi�cantly better than that of ScanSoft's segmentation algorithm which in turn is signi�cantly better than that
of X-Y cut. We intend to extend this work to evaluation of tables, graphs and half-tone images.
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Figure 1. (a) This �gure shows a set of possible text-line errors. Solid line rectangles denote groundtruth zones,
dashed-line rectangles denote OCR segmentation zones and dark bars within groundtruth zones denote groundtruth
text-lines, dark bars outside solid lines are noise blocks. HS is Horizontal Split, VSBB is Vertical Split on Text-line
Bounding Box, VM is Vertical Merge, MD is Miss-detection, FA is False Alarm, HM is the Horizontal Merge and
VS is Vertical Split. (b) This �gure shows a document page with groundtruth zones. (c) This �gure shows an OCR
experimental segmentation result on this document page. (d) This �gure shows segmentation error text-lines. Notice
that there are two horizontally merged zones just below the caption and two horizontally merged zones in the middle
of the text body. In OCR output, horizontally split zones cause error in terms of reading order whereas vertically
split zones do not cause such errors.
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Figure 2. The �rst three algorithms in the bar chart are reseach algorithms, the last two algorithms are commercial
products. (a) shows the testing results of performance index (text-line accuracy) for each algorithm. A 95% con�dence
t-test indicates that the performance of Voronoi, Docstrum and Caere are not signi�cantly di�erent, but the three
are signi�cantly better than ScanSoft, which in turn is signi�cantly better than X-Y cut. (b) shows testing results
of algorithm timing for each algorithm. A 95% con�dence t-test indicates each algorithm's timing is signi�cantly
di�erent from that of any other algorithm. From the least to most algorithm timing, algorithms are ranked as: Caere,
X-Y cut, ScanSoft, Voronoi and Docstrum.
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Figure 3. Page error rate is the ratio of the total number of error groundtruth text-lines and the total number of
groundtruth text-lines. In this �gure, we show the average page error rate. A 95% con�dence t-test indicates: 1) for
HVBB split text-line error shown in (a), the error rates of ScanSoft and X-Y Cut are not signi�cantly di�erent, but
they are sigini�cantly higher than those of the other three algorithms. Moreover, the error rate of Voronoi, Docstrum
and Caere are signi�cantly di�erent from each other; 2) for horizontally merged text-line error shown in (b), the
error rate of all �ve algorithms are signi�cantly di�erent from each other.


