LAMP-TR-37 December 1999
CAR-TR-933
CS-TR-4093

A Methodology for Empirical
Performance Evaluation
of Page Segmentation Algorithms

Song Mao and Tapas Kanungo

A Methodology for Empirical Performance Evaluation
of Page Segmentation Algorithms

Song Mao and Tapas Kanungo

Language and Media Processing Laboratory
Center for Automation Research

University of Maryland, College Park, MD

Abstract

Document page segmentation is a crucial preprocessing step in Optical Character Recog-
nition (OCR) systems. While numerous page segmentation algorithms have been pro-
posed, there is relatively less literature on comparative evaluation — empirical or the-
oretical — of these algorithms. For the existing performance evaluation methods, two
crucial components are usually missing: 1) automatic training of algorithms with free
parameters and 2) statistical and error analysis of experimental results. In this thesis,
we use the following five-step methodology to quantitatively compare the performance
of page segmentation algorithms: 1) First we create mutually exclusive training and test
datasets with groundtruth, 2) we then select a meaningful and computable performance
metric, 3) an optimization procedure is then used to search automatically for the opti-
mal parameter values of the segmentation algorithms, 4) the segmentation algorithms are
then evaluated on the test dataset, and finally 5) a statistical error analysis is performed
to give the statistical significance of the experimental results. The automatic training of
algorithms is posed as an optimization problem and a direct search method — the sim-
plex method — is used to search for a set of optimal parameter values. A paired-model
statistical analysis and an error analysis are conducted to provide confidence intervals for
the experimental results and to interpret the functionalities of algorithms. This method-
ology is applied to the evaluation of five page segmentation algorithms, of which three are
representative research algorithms and the other two are well-known commercial prod-
ucts, on 978 images from the University of Washington IIT dataset. It is found that
that the performances of the Voronoi, Docstrum and Caere segmentation algorithms are

This research was funded in part by the Department of Defense and the Army Research Laboratory
under Contract MDA 9049-6C-1250.

not significantly different from each other, but they are significantly better than that of
ScanSoft’s segmentation algorithm, which in turn is significantly better than that of X-Y
cut.

1 Introduction

Optical Character Recognition (OCR) is the automated process of translating an input
document image into a symbolic text file. The input document images can come from
a large variety of media such as journals, books, newspapers, magazines, microfilms,
personal notes, etc. They can be digitally created, faxed or scanned document images.
The format of a document image can be handwritten or machine printed. A document
can contain text, tables, figures and halftone images. The output symbolic text file from
an OCR system can include only the text content of the input document image, or it can
also include additional descriptive information such as page layout, font size and style,
document region type, confidence level for the recognized characters, etc.

Page segmentation is a crucial preprocessing step in an OCR system. It is the process
of dividing a document image into homogeneous zones, i.e., those zones that only contain
one type of information such as text, a table, a figure or a halftone image. In many
cases, OCR system accuracy heavily depends on the accuracy of the page segmentation
algorithm. While numerous page segmentation algorithms have been proposed in the
past, relatively little research effort has been devoted to the comparative evaluation —
empirical or theoretical — of these algorithms.

This report is organized as follows. In Section 2 we conduct a survey of related lit-
erature. In Section 3 we provide the problem definition for page segmentation, error
measurements and a metric. In Section 4 we outline our five-step empirical performance
evaluation methodology. In Section 5, automatic algorithm training is posed as an opti-
mization problem and a simplex algorithm is described. In Section 6 our paired model
statistical analysis method is presented. In Section 7, the segmentation algorithms that
we evaluated are described. In Section 8 the experimental protocol for conducting the
training and testing experiments are presented. In Section 9 we report experimental
results and provide a detailed discussion. Finally, in Section 10, we give our conclusions.
We have reported part of the work presented in this thesis in Document Recognition and

Retrieval VII [23].

2 Literature Survey

Page segmentation algorithms can be categorized into three classes: top-down approaches,
bottom-up approaches and hybrid approaches. The Docstrum algorithm of O’Gorman
[28], the Voronoi-diagram-based algorithm of Kise [19], the run-length smearing algo-
rithm of Wahl, Wong and Casey [43], the segmentation algorithm of Jain and Yu [15],
and the text string separation algorithm of Fletcher and Kasturi [7] are typical bottom-
up algorithms, while the X-Y cut by Nagy [25, 26] and the shape-directed-covers-based
algorithm by Baird [2, 1] are top-down algorithms. Pavlidis and Zhou [30] proposed a
hybrid algorithm using a split-and-merge strategy. A survey of OCR and page segmen-
tation algorithms can be found in O’Gorman and Kasturi [29] and Jain and Yu [15]. A
recent workshop [5] was devoted to addressing issues related to page segmentation.
While many segmentation algorithms have been proposed in the literature, relatively
few researchers have addressed the issue of quantitative evaluation of segmentation algo-
rithms. Several page segmentation performance evaluation methods have been proposed

1

in the past. Kanai et al. [16] proposed a metric that is a weighted sum of the number
of edit operations (insertions, deletions and moves). The advantage of this method is
that it requires only ASCII text groundtruth and hence does not require zone or textline
bounding-box groundtruth. The limitations of this method are that it cannot specity the
error location in the image, it is dependent on the OCR engine’s recognition accuracy,
and the metric cannot be computed for languages for which no OCR engine is avail-
able. Rice, Jenkins and Nartker [38] used this performance metric in their comparative
evaluation of the automatic zoning accuracy of four commercial OCR, products. Vincent
et al. [36, 37, 45] proposed various bitmap-level region-based metrics. The advantages
of the Vincent et al. approach are that it can evaluate both text regions and non-text
regions, it is independent of zone representation schemes, the errors can be localized and
categorized, and the performance metric can be customized by the users. A limitation of
this method is that the metric is dependent on pixel noise. Liang, Phillips and Haralick
[22] describe a region-area-based metric. The overlap area of a groundtruth zone and a
segmentation zone is used to compute this performance metric. Many OCR performance
evaluation case studies are discussed in [14].

In the general computer vision area, numerous researchers have presented methods
for empirical performance evaluation. For example, Hoover et al. [13] proposed an exper-
imental framework for quantitative comparison of range image segmentation algorithms
and demonstrated the methodology by evaluating four range segmentation algorithms.
Kanungo et al. [17] described a four-step methodology for the evaluation of two detection
algorithms. Phillips and Chhabra [32] presented a methodology for empirically evaluat-
ing graphics recognition systems. These methodologies have not addressed the issues of
automatic training of algorithms with free parameters and statistical and error analysis
of experimental results. Phillips et al. [33] proposed the FERET evaluation methodology
for face recognition algorithms. However, the problem addressed here is only face clas-
sification and in particular not face segmentation. A special issue of IFEE Transactions
on Pattern Analysis and Machine Intelligence (Vol. 21, 1999) was devoted to empirical
evaluation of computer vision algorithms. Two workshops have been devoted to empirical
evaluation techniques and methodologies in computer vision [3, 10].

In research segmentation algorithms that have user-specifiable parameters, typically
the default parameter values are selected and no training method is explicitly specified
[19, 2, 28, 15, 30, 7]. Similarly, in performance evaluation literature where the algorithm
parameters can be set by evaluators, a set of parameter values are usually selected man-
ually in the training procedure [13, 17, 32]. A common fact of the above parameter
values selecting methods or training methods is that a set of “optimal parameter values”
are manually selected based on some assumption regarding the training dataset. To ob-
jectively optimize a segmentation algorithm on a given training dataset, a set of optimal
parameter values should be automatically found by a training procedure. Automatic
training of any algorithm with free parameters is actually an optimization problem. In
the optimization area, there are a number of classes of optimization problems based on
the properties of the given objective function. An in-depth discussion and classification
of optimization problems can be found in Gill, Murray and Wright [8]. In our case,
since the objective function corresponding to a performance metric for page segmenta-
tion algorithms is not rigorously defined mathematically, automatic training is posed

2

as a multivariate non-smooth nonlinear function optimization problems. Direct search
algorithms are typically used for solving optimization problems involving this kind of
objective function. Powell [34] gives a detailed survey of direct search algorithms. Line
search methods, discrete grid methods, simplex methods, conjugate direction methods,
linear approximation methods, and quadratic approximation methods are designed to
converge to a local minimum of the objective function. Additional survey literature re-
garding direct search algorithms can be found in [21, 44]. Many practical optimization
calculations have many local minima that are not optimal. “Simulated annealing” [20]
and “genetic” [9] algorithms are proposed to search for a global minimum by selecting vec-
tors of variables using random number generators. We chose the simplex search method
proposed by Nelder and Mead [27] since it is recognized as one of the most reliable and
efficient methods [4, 41] for optimizing an objective function for which derivatives are
not available.

3 The Page Segmentation Problem and Error Metrics

In this section, we give the definition of page segmentation. In order to evaluate the
performance of page segmentation algorithms, a set of error measurements and metrics
are needed. We provide the definitions of our proposed textline based error measures
and metric. These definitions are based on set theory and mathematical morphology

[42, 24, 12].

3.1 Page Segmentation Definition

Let [be a document image, and let & be the groundtruth of I. Let Z(G) = {ZqG,q =
1,2,...,#Z(G)} be a set of groundtruth zones of document image I where # denotes the
cardinality of a set. Let L(ZqG) = {lfj,j =1,2,..., #L(ZqG)} be the set of groundtruth
textlines in groundtruth zone ZqG. Let the set of all groundtruth textlines in document

image [be £ = Uj&:Zl(G)L(ZqG). Let A be a given segmentation algorithm, Sega(-,-) be the

segmentation function corresponding to algorithm A. Let R be the segmentation result
of algorithm A such that R = Sega(I,p?) where Z(R) = {ZF |k =1,2,....#7Z(R)}.

Let D(-) C Z? be the domain of its argument. The groundtruth zones and textlines
have the following properties:

1. D(ZqG)ﬂD(ZqC,;) = ¢ for ZqG,ZqC,; € Z(G) and ¢ # ¢', and
2. D(IEYN D(IG) = ¢ for I¥,15 € L and 1 # 7.

1 0 byt

In our evaluation method, we evaluate deskewed document images with rectangular
zones and textline groundtruth. Some groundtruth generation methods provide only
zone-level groundtruth. In our evaluation methodology, we need both zone-level and
textline-level groundtruth.

3.2 Error Measurements and Metric Definitions

A meaningful and computable performance metric is essential for evaluating page segmen-
tation algorithms quantitatively. While a performance metric is typically not unique, and

3

researchers can select a particular performance metric to study certain aspects of page
segmentation algorithms, a set of error measurements is necessary. Let Ty, Ty € ZTU{0}
be two length thresholds (in number of pixels) that determine if the overlap is signifi-
cant or not. Let E(Tx,Ty) = {e € Z*| = Tx < X(e) < Tx,—Ty < Y(e) < Ty} be
a rectangular region centered at (0,0) with a width of 2Tx and a height of 27y where
X(-) and Y () denote the X and Y coordinates of the argument respectively. We now
define two morphological operations: dilation and erosion [42, 24, 12]. Let A, B C Z2.
Morphological dilation of A by B is denoted by A & B and is defined as

A@B:{c€Z2|c:a—|—b for some aEA,bEB}.
Morphological erosion of A by B is denoted by A & B and is defined as
Ao B = {CE Z2|c—|—b€A for every bEB}.

We first define correctly detected groundtruth textlines, and then define four types of
textline-based error measurements.

1. Groundtruth textlines that are correctly detected:
Dy = {19 € LID(I) & E(Tx,Ty) € D(Z%) for some Z% € Z(R)},

2. Groundtruth textlines that are missed:

Cp, = {15 € LID(I) & E(Tx,Ty) € (UznezmD(Z7))}

3. Groundtruth textlines whose bounding boxes are split:
S, = {19 € LI(DU%) & B(Tx, Ty)) 0 D(Z7) # ¢,
(D(I%) & E(Tx, Ty)) N (D(ZR))° # ¢, for some Z% € Z(R)}

4. Groundtruth textlines that are horizontally merged:
M, = {zg; € LG, € £, 2% € Z(R),q # ¢, 25,75 € 7(G)
(D(I%) & E(Tx, Ty)) (0 D(Z) # 6, (DU%,) & E(Tx, Ty)) 0 D(Z4) £ 6,
(D(lg5) © E(0,Ty)) © E(00,0)) N D(Z7) # ¢,

(D(I5,) & (0. Ty)) & E(o0,0) N D(Z) # 6}

5. Noise zones that are falsely detected (false alarms):

F = {ZR € Z(R)|D(Z") C (Ujees(D(19) & E(TxaTY)))C}

Figure 1 shows an example of errors in groundtruth textlines.

Let the number of groundtruth error textlines be #{C U S, U My} (mis-detected,
split or horizontally merged) , and let the total number of groundtruth textlines be #L.
We define the performance metric p(1, G, R) as textline accuracy:

CHL—#{CLU S, UML)
_ Y .

In general, the performance metric p(I, G, R) can be any function of £, Dy, Cr, St, My,
and Fp. Figure 2 gives a set of possible errors as well as an experimental example.

p(]v G, R) (1)

4

Figure 1: This figure shows examples of textline errors. (a) shows a groundtruth textline
19 split into two segmentation zones ZI* and ZI. (b) shows two groundtruth zones
Z& and Z§ horizontally merged into segmentation zone Z®. Only the dark groundtruth
textlines [§), 15, 151, IS, are considered horizontally merged since they are the only textlines
that are impacted by the horizontal merge. (c) shows two textlines I} and IS, on which
multiple errors happen. [is split by ZF and merged by ZE, IS is split by ZF and ZIt
and merged by ZI*. In our metric we count two instance of textline error.

We consider three types of textline errors — split, missed and horizontally merged.
We see that this textline-based performance metric has the following features: 1) it is
rigorously defined using set theory and mathematical morphology, 2) it is independent of
zone shape, 3) it is independent of OCR recognition error, 4) it ignores the background
information (white space, salt and pepper noise, etc.), 5) segmentation errors can be
localized, and 6) quantitative evaluation of lower level (e.g. textline, word and char-
acter) segmentation algorithms can be readily achieved with little modifications. This
performance metric, however, requires textline level groundtruth.

4 Performance Evaluation Methodology

We now introduce a five step methodology. In this methodology, we identify three crucial
components: automatic training, statistical analysis, and error analysis.

A large and representative dataset is desirable in any performance evaluation task
in order to give objective performance measurements of the algorithms. A typical page
segmentation algorithm has a set of parameters that affect its performance. The perfor-
mance index is usually a user-defined performance metric that measures an aspect of the
algorithm that the user is interested in. In order to evaluate a page segmentation algo-
rithm on a specific dataset, a set of optimum parameters has to be used. The optimum
parameter set is a function of the given dataset, the groundtruth, and the performance
metric. The set of optimum parameters for one dataset may be a non-optimal parameter
set for another dataset. Hence the choice of parameters is crucial in any performance
evaluation task. When the size of the dataset gets very large, parameter set training
on the whole dataset becomes computationally prohibitive and therefore a representative
sample dataset of much smaller size must be used as a training dataset. After the training
step, the page segmentation algorithms with the optimal parameters should be evaluated
on a test dataset that is different from the training set. Finally, in order to interpret the
significance of the experimental results, a statistical error analysis should be performed.

5

Horizontally
Split
olume 8 Annals 1172
) Number 1 bf the N
Vggllictzaol Iny 1993 IMissouri
Bounding Botanica
Box Horizontally sarden
Merged
NONOGTPRCOFTHE
NEOTROPICAL SPECIES O
457 CT.
HYM, Lf:ﬂll‘,"l
Vertically
Merged
Vertically
Split
Missed
Detection
False Alarm

Volume 8 Annald ik Volume 80 Annals

Number 1 bl the R Number 1 of the)&

1993 Missouri 1993 Missouri
Botanical Botanical
Carden Garden

Noriaki
Robbin €.

Aw. Missoum Bor. Gat, 80; 138, 1998

(c) (d)

Figure 2: (a) This figure shows a set of possible textline errors. Solid line rectangles
denote groundtruth zones, dashed-line rectangles denote OCR segmentation zones, dark
bars within groundtruth zones denote groundtruth textlines, and dark bars outside solid
lines are noise blocks. (b) This figure shows a document page image from the University
of Washington III dataset with the groundtruth zones overlaid. (c¢) This figure shows an
OCR experimental segmentation result on this document page image. (d) This figure
shows segmentation error textlines. Notice that there are two horizontally merged zones
just below the caption and two horizontally merged zones in the middle of the text body.
In OCR output, horizontally split zones cause reading order errors whereas vertically
split zones do not cause such errors.

Let D be a given dataset containing document image and groundtruth pairs (I,). The
steps in our methodology for evaluating page segmentation algorithms are as follows:

1. Randomly partition the dataset D into a mutually exclusive training dataset 7 and
test dataset S. Thus D=7 US and 7T NS = ¢, where ¢ is the empty dataset.

2. Define a meaningful and computable performance metric p(I, G, R) where [is an
document image, G is the groundtruth of I, and R is the segmentation result on 1.

3. For a selected segmentation algorithm A, specify its parameter vector p# and au-
tomatically find the optimal parameter setting p* for which an objective function
f(p*; T, p, A) assumes the “best” measure on the training dataset 7.

4. Evaluate the segmentation algorithm A with optimized parameters p* on the test
dataset S by ® ({p(G, Sega(1,p*N(I,G) € S}) where @ is a function of the per-
formance metric p on each document image and groundtruth pair (7,) in the test
dataset S, and Sega(-,-) is the segmentation function corresponding to A. The
function ® is defined by the user. In our case, ® is defined as the average of the
performance metric p(G, Seg (I, p?)) on each document image and groundtruth
pair (I,G) in the test dataset S.

5. Perform a statistical analysis to find the significance of the evaluation results and
identify /hypothesize why the algorithms perform at the respective levels.

The above methodology can be applied to any segmentation algorithm that has free
parameters. If the algorithm does not have free parameters, as is the case with many
commercial algorithms, we do not perform the training step.

This methodology is similar to typical methodologies used in pattern recognition. In
pattern recognition, problems are usually well defined mathematically and hence a better
training strategy and optimization method can be used than in our case, where page seg-
mentation algorithms are not rigorously defined mathematically. In the computer vision
and image processing literatures, Kanungo et al. [17] conducted a quantitative perfor-
mance evaluation of two detection algorithms. Hoover et al. [13] quantitatively compared
four range image algorithms. In both of these papers, while a detailed methodology and
experimental framework were carefully designed, two important components, automatic
algorithm training and statistical analysis of the experimental results, were missing.

5 Automatic Algorithm Training: The Optimization Problem

Any automatic training or learning problem can be posed as an optimization problem.
An optimization problem has three components, the objective function that gives a single
measure, a set of parameters that the objective function is dependent on, and a param-
eter subspace that defines acceptable or reasonable parameter values. The acceptable or
reasonable parameter subspace defines the constraints on the optimization problem. The
purpose of an optimization procedure is to find a set of parameter values for which the ob-
jective function gives the “best” (minimum or maximum) measure values. In this section,
we first define the objective function in our performance evaluation of page segmentation

7

algorithms, then we introduce a direct search algorithm to optimize the defined objective
function, and finally we discuss starting point selection in our optimization problem.

5.1 The Objective Function

In this subsection, we identify the objective function. Let p# be the parameter vector for
the segmentation algorithm A, let 7 be a training dataset, and let p(I, G, Sega(I,p™?))
where (I, G) € T is a performance metric. We define the objective function f(p#; 7, A, p)
to be minimized as the average textline error rate on the training dataset:

Z 1—p(G,SegA(],pA))) (2)

(1,G)eT

1
A
T, A p) =
f(p ? b 7p) #/]’
where p is defined in Equation (1).
This objective function has the following properties:

o [t is dependent on the values of the algorithm parameters,

e The function value is the only information available,

e The function has no explicit mathematical form and is non-differentiable,
e Obtaining a function value requires nontrivial computation.

This objective function can be classified as a multivariate non-smooth function [8]. In
the following section, we describe an optimization algorithm to minimize this objective
function.

5.2 The Simplex Search Method

Direct search methods are typically used to solve the optimization problem described in
Section 4.1. We choose the simplex search method proposed by Nelder and Mead [27] to
minimize our objective function.

We give the notation used to describe the simplex method: Let qg and A\;,e=1,....n
be a starting point and a set of scales, let ;,2 = 1,...,n be n orthogonal unit vectors in
n-dimensional parameter space, let po, ..., p, be (n+1) ordered points in n-dimensional
parameter space such that their corresponding function values satisfy fo < f1 <,..., <
I, let p = X" p;/n be the centroid of the n best (smallest) points, let [p;p;] be the
n-dimensional Euclidean distance from p; to p;, let «, 3, v and o be the reflection,
contraction, expansion and shrinkage coefficient, respectively, and let T' be the threshold
for the stopping criterion. We use the standard choice for the coefficients: o = 1, 8 = 0.5,
v=2,0=05 Weset T to107°. Figure 5.2 shows the various simplex operations.

For a segmentation algorithm with n parameters, the Nelder-Mead algorithm works
as follows:

1. Given qg and the A;, form the initial simplex qo = {qo,q1,---, 9}
G =qo+ Nej,i=1,...,n.,

Figure 3: This figure shows four simplex operations in a two-dimensional parameter space.
The solid lines denote the simplex before any operation and the dashed lines denote the
simplex after the operation. py and pg are the vertices for which the objective funtion f(-)
assumes the biggest and smallest values respectively, and p = 3°1_, p;/2 is the centroid
of the two best vertices. The operations are (a) a reflection p, of py with respect to
the centroid point p, (b) an expansion p. of ps with respect to the centroid point p, (c)
a contraction p. of py with respect to the centroid point p, and (d) a shrinkage of all
pi,t # 0 toward po. A local minimum can be obtained after an appropriate sequence of

such operations.

f(P)

e P

@)

(d)

2. Relabel the n + 1 vertices as po,...,pn, With f(po) < f(p1) -+ < f(pn),
3. Get a reflection point p, of p, by p, = (1 + a)p — ap,, where a = [p,p]/[p~P]-

4. If f(pr) < f(po), replace p,, by p,, get an expansion point p. of p, by p. =
(1 =7)p + yp. where v = [pcp]/[p.p] > 1.

5. Elseif f(p,) > f(Pn-1), if f(pr) < f(pn) replace p,, by p,, get a contraction point

P. of p, by p. = (1 = 8)p + #p, where 3 = [p.p]/[p.p] < 1. If f(pc) = f(Pn);
shrink the simplex around the best vertices po by p; = (p:+po)o, i # 0, else replace

Pn by pe.
6. Else, replace p,, by p,.
71\ /Tg(pi — p)?/n < T, stop.

8. Else go back to step 2.

5.3 Starting Point Selection

The objective function corresponding to each segmentation algorithm need not have a
unique minimum. Furthermore, direct search optimization algorithms are local optimiza-
tion algorithms. Thus, for each (different) starting point, the optimization algorithm
could converge to a different optimal solution. We constrain the parameter values to lie
within a reasonable range and randomly choose six starting locations within this range.
The optimal solution corresponding to the lowest optimal value is chosen as the best
optimal parameter vector.

6 Statistical Analysis: A Paired Model Approach

In comparative performance evaluation frameworks, statistical analysis plays a crucial
role in objectively interpreting the experimental results. In our experiments, we compare
the performance metric values (average textline accuracy) of page segmentation algo-
rithms against each other. In doing so, some basic questions are immediately raised: 1)
If the performance metric of one algorithm is better than that of another algorithm, is the
result statistically significant? 2) What is the uncertainty in the estimated performance
metric? 3) Are the algorithms in one class performing significantly better than those in
another class? 4) What are the sources of performance metric variance? To answer such
questions, a statistical model needs to be constructed for the experimental observations.

In this section, we describe a paired model analysis approach proposed by Kanungo
et al. [18] for their evaluation of Arabic OCR engines and adapt it to analyze our
experimental results. We use the paired model to model our experimental observations
and to provide underlying theory for creating confidence intervals and testing hypotheses.

10

6.1 Modeling Experimental Data Using the Paired Model

In this section, we set up the notation and fit the paired model to our experimental
observation data. Let Ay, Ay ..., Ay denote the k algorithms we evaluate, and let X;;, ¢ =

.k, j=1,...,n be the observation (textline accuracy) corresponding to algorithm
A; and document image I; in test dataset S. In our experiment, the number of algorithms
k is 5 and the total number of images n in test dataset S is 878. We assume that the
observations from different images are statistically independent, i.e., that X;; and X/
are independent when j # 7. We also assume for a fixed algorithm A;, that observations
Xij,j = 1,...,n, are iid random variables with finite mean y; and finite variance o?.
However the observations X;; and X;; corresponding to two different algorithms, i.e.,
t # 1, on the same image I; are statistically dependent since the two algorithms use the
same image as input. We assume that the correlation coefficient p;;» of observations of
algorithm A; and A; on the same page is constant. This p;; is positive since a document
image that causes an algorithm to generate a bad performance metric generally will
cause another algorithm also to generate a bad performance metric. Let cov(X;;, Xir;) =
piiroioy where © # 1 is the covariance of observation X,;, Xi;.

Now construct a new random variable Wi, = X;; — Xy, 0 # ¢/, where Wi; and Wiy
are independent. Based on our assumptions, it is easﬂy seen that W;,;s are iid random
variables for fixed ¢ and . Let Wy and V% be the sample mean and sample variance of
Wi and let Ay be true mean difference such that Ay = p; —pi. An unbiased estimator

of A,y s A“/ =W, = X; — X,y since

The variance of the estimator A is

2 2
g, + O — 2/)“'/0'2'0'2'/

Var[Aw] = Var[Wi] = Var[Xi: — Xi] = (4)

n

6.2 Confidence Intervals and Hypothesis Testing

In this section we address two important issues: i) How does one characterize uncertainty
of the performance metric estimates? and ii) If the average textline accuracy of one algo-
rithm is better than another, how do we verify that the result is statistically significant
and not just due to chance? Let us first address the issue of uncertainty in performance
estimates. Since W;;; are iid random variables, for fixed ¢ and " where ¢ # ¢/, by the
Central Limit Theorem we have

lim i = Qiir_ = lim Wi = (i —) ~ N(0,1), (5)
n=co gy /\/_ n—00 oiin [/

where o, 1s the true standard deviation of A“/ For large samples, it is sufficient for us

to assume that

A~

Ay — Ay _ Wi — (s — par)
Uii’/\/ﬁ Uii’/\/ﬁ

~ N(0,1). (6)

11

When o, is not available as it is in our case, the sample standard deviation V; is
typically used in place of o;; on the left side of Equation (6). The new formula has an
approximate t distribution with n — 1 degrees of freedom, i.e.,

Ajir — Ay _ Wi — (pi — pr) ~t (1)
Vie[v/n Vie[v/n T

Thus, for a given significance level «, we can compute a confidence interval as

A toz/? n—1Viir
Ay € Ay £ 2220 8
© Vv ®)

The second problem we want to address is whether or not one algorithm is performing
significantly better than another. That is, we want to test the hypothesis that the true
means of the observations from two different algorithms are significantly different. Let
f(t) be the probability density function (pdf) of the ¢ distribution with n — 1 degrees of
freedom. Let T'(X;1,..., Xin, Xin,..., Xirn) be the test statistic, which is a function of
the observations. For a given significance level «, the corresponding hypothesis test can
be formulated as follows:

e Null hypothesis:
Ho: Ayr = pig — pgr =0,

o Alternative hypothesis:
Hy o Ny = py — ppr # 0,

Test statistic:

A~

T = T(Xﬂ, Ce ,Xm,Xill, Ce 7Xi’n) = (A“/ — 0)/(‘/“//\/5) (9)

e Approximate distribution of the test statistic 7' under the null hypothesis Hy:

t distribution with n — 1 degrees of freedom

Rejection region significance level « test:

Define Py — /_ "yt + /T O (10)

o0

Reject the null hypothesis Hy if P,y < «.

6.3 Advantages of the Paired Model Analysis

This paired test is valid even if ¢? # o2 where 1 # /. We do not need to assume a
distribution for observation X;;. Since the correlation of observations on the same image
is considered, a variance of (o + 0% — 2p;0;0,)/n is obtained for the estimator A”’/ of
Ao This variance is smaller than that in the case where this correlation is ignored, i.e.
the two samples X;1,..., X, and Xiq,..., X;, are assumed to be independent. In the

12

later case, since two samples are independent, the variance of the estimator A;; is given

by
. o? 4 o2

VCLT[A“'/] = - !

(11)

n
Since p; > 0, it can be easily seen that

2 2 2 2
g, + o > o + g — 2/)“'/0'2'0'2'/

(12)

n n

In other words, a more precise estimate of A;; is obtained if we use the paired model.

7 Page Segmentation Algorithms

Page segmentation algorithms can be categorized into three classes: top-down approaches,
bottom-up approaches and hybrid approaches. Top-down algorithms start from the whole
document image and iteratively split it into smaller ranges. The splitting procedure stops
when some criterion is met and the obtained ranges constitute the final segmentation re-
sults. Bottom-up algorithms start from document image pixels, and cluster the pixels
into connected components which are then clustered into words, lines or final zone seg-
mentations. If there are word clustering or line clustering procedures, the final zone
segmentations are obtained by clustering the words or lines. The commercial products
usually are “black-box” algorithms from which no algorithm structure information can
be inferred.

7.1 The X-Y Cut Page Segmentation Algorithm

The X-Y cut segmentation algorithm [25, 26] is a tree-based, top-down algorithm. The
root node of the tree represents the entire document page image I, an interior node
represents a rectangle on the page, and all the leat nodes together represent the final
segmentation. While this algorithm is easy to implement, it can only work on document
pages with Manhattan layout and rectangular zones. The algorithm works as follows:

1. Create the horizontal and vertical prefix sum tables Hy and Hy as follows:
Hxl[i][j] = #{p € DU)|X(p) =j,Y(p) <i,1(p) =1},
Hy[i][j] = #{p € D(I)|X(p) <5, Y(p) =4, 1(p) = 1},
where D(I) C Z? is the domain of the image I and I(p) is the binary value of the
image at pixel p, and X(p) and Y (p) are the X and Y coordinates of the pixel p
respectively.

2. Initialize a tree with the entire document image as the root node. For each node
do the following:

(a) Compute X and Y black pixel projection profile histograms of the current node
as follows:
HISx[i] — Hy [V 2]l — HxVa(2]l
HISY (] — By X)) — Hy [X0(7).
where 7 is the zone corresponding to the current node, and (X1(%2),Y1(72))
and (X3(7), Y3(Z)) are upper-left and lower-right points of the zone.

13

7.2

(b) Shrink each current zone bounding box until it “tightly” encloses the the
zone body. Noise removal thresholds 7% and Ty are then used to classify
and remove background noise pixels. Since noise pixels in the background are
assumed to be distributed uniformly, the noise removal thresholds Ty and Ty
for a particular node are scaled linearly based on the current zone’s width and

height.
(c) Repeat step 2a.

(d) Obtain the widest zero valleys Vx and Vy in the X and Y projection profile
histograms HISy and HISy.

(e) If Vx > Tx or Vy > Ty, where Tx and Ty are two width thresholds, split
at the mid-point of the wider of Vx and V4 and generate two child nodes
Otherwise, make the current node a leaf node.

The Docstrum Page Segmentation Algorithm

Docstrum [28] is a bottom-up page segmentation algorithm that can work on document

page images with non-Manhattan layout and arbitrary skew angles. However, this algo-
rithm only applies to the segmentation of text regions. Moreover, it does not perform well
when the document page image contains too many joined characters and the estimates of
inter-character spacing, inter-line spacing and orientation angle become inaccurate when

document images contain sparse characters.

The basic steps of the Docstrum segmentation algorithm are as follows:

1.

2.

Obtain connected components (C;s) using a space-efficient two-pass algorithm [11].

Remove small and big noise or non-text connected components using low and high

thresholds [and h.

Separate the C;s into two groups, one with dominant characters and the other with
characters in titles and section headings. A parameter f; controls the clustering.

Find the K nearest neighbors, NNg(¢), of each C;.

Compute the distance and angle of each (; and its K nearest neighbors: (pé, (9;),
such that j € NNg (7).

Compute a within-line nearest-neighbor distance histogram from the following set
W, : W, = {p;|j € NNg(2), and — 0 < (9; < 0,}, where 0 is the horizontal
angle tolerance threshold. Estimate the within-line inter-character spacing ¢s as
the location of the peak in the histogram.

Compute a between-line nearest-neighbor distance histogram from the set B, :
B, = {p;|j € NNg(7), and 90° -6, < (9; <90°+40,}, where 6, is the vertical angle
tolerance threshold. Estimate the inter-line spacing [s as the location of the peak
in the histogram.

14

8. Perform transitive closure on within-line nearest neighbor pairings to obtain textlines
L;s using within-line nearest neighbor distance threshold T.; = f; - ¢s.

9. Perform transitive closure on the L;s to obtain structural blocks or zones Z;s using
parallel distance threshold T,, = f,, - ¢s and perpendicular distance threshold
Tye = fpe-ls. The parallel and perpendicular distances are computed as “end-end”
distance, not “centroid-centroid” distance.

In our implementation, we did not estimate orientation since all pages in the dataset
were deskewed. Furthermore, we used a resolution of 1 pixel/bin for constructing the
within-line and between-line histograms, and did not perform any smoothing of these
histograms.

7.3 The Voronoi-Diagram-Based Page Segmentation Algorithm

Kise’s segmentation algorithm [19] is also a bottom-up algorithm based on the Voronoi
diagram. This method can work on document page images that have non-Manhattan
layout, arbitrary skew angles, or non-linear textlines. A set of connected line segments
are used to bound text zones. Since we evaluate all algorithms on document page images
with Manhattan layouts, this algorithm has been modified to generate rectangular zones.
This algorithm tends to fragment non-text regions (figures, tables and halftone images)
and text zones with irregular font sizes and spacings. It assumes that text regions are
dominant on a page and that the inter-character and inter-line spacing within a text
region are uniform. The algorithm steps are as follows:

1. Label connected components. A fast labeling procedure based on border following
is used. The 8-connected components and sample points on their borders are si-
multaneously obtained from the input image. The algorithm parameter sr controls
the number of sample points used.

2. Remove noise connected components using maximum noise zone size threshold
nm, maximum width threshold C,,, maximum height threshold (%, and maximum
aspect ratio threshold (. for all connected components.

3. Generate a Voronoi diagram. The Voronoi diagram for each connected component
is generated using the sample points on its border.

4. Delete superfluous Voronoi edges. These edges are deleted to obtain text zone
boundaries according to the following criteria. lLet E be the Voronoi edge be-
tween two connected components C; and C; and let d(E£) be the minimum distance
between any two sample points from C; and C;. Let Ty; be the estimate of inter-
character spacing, and let T;;5 be the estimate of the inter-line spacing plus a margin
controlled by a factor fr. Define a,(E) as the area ratio max{Area(C;), Area(C;)}/min{Area(C;), Ar
and the threshold T, as the largest area ratio between the characters of the same
font and size. If a Voronoi edge satisfies d(E)/Tin < 1 or d(E)/Tye +a.(E)/T, < 1,
it is deleted. In this criterion, the first inequality indicates that the Voronoi edges

15

between C; and C; with a spacing smaller than the estimated inter-character spac-
ing are deleted, regardless of their area ratio. The second inequality implies that we
do not delete the Voronoi edge if 1) C; and C; come from different text zones that
have larger spacing than inter-line spacing plus a margin, or if 2) one is a character
and the other is a non-text object that has very different area from the character.

5. Remove noise zones using minimum area threshold A, for all zones, and using
minimum area threshold A4;, and maximum aspect ratio threshold B, for the zones
that are vertical and elongated.

A C implementation of this algorithm was provided to us by Professor Koichi Kise.

7.4 Commercial Segmentation Algorithms

Two commercial products, Caere’s segmentation algorithm [6] and ScanSoft’s segmenta-
tion algorithm [39, 40], were selected for evaluation. They are representative state-of-art
commercial products. Both are black-box algorithms with no free parameters.

8 Experimental Protocol

In this section we provide the details of our experimental setup so that other researchers
can replicate our experiments. The experiment we conducted has a training phase and
a testing phase for the three research algorithms, and only a testing phase for the two
commercial products since they do not have user-specifiable free parameters. We used
textline accuracy as our performance metric. For each document page, we obtained a
performance metric value. We then computed an average performance metric value over
all document pages in the training dataset 7 or test dataset S and report it as the final
algorithm performance index.

In Section 8.1, we specify the dataset set used in our experiments. In Section 8.2, we
describe the training procedure and specify the parameters for each research algorithm.
In Section 8.3, we briefly describe the testing procedure. In Section 8.4, we give the
details of the hardware and software environments.

8.1 Dataset Specification

We selected the University of Washington Dataset [31] for the performance evaluation
task since it is the only dataset that has textline level groundtruth for each document
page. All pages in the dataset are journal pages from a large variety of journals in
diverse subject areas and from different publishers. The dataset also has geometric
textline and zone groundtruth for each page. The textline and zone groundtruth are
represented by non-overlapping rectangles. The University of Washington III dataset
has 1601 deskewed binary document images at 300 dpi resolution. We chose a subset
of 978 pages that correspond to the University of Washington I dataset pages as our
experimental dataset. We evaluated the chosen algorithms only on text regions since
they carry the most information about a document image. The non-text regions were
ignored in evaluation process. We plan to extend our work to the evaluation of non-text

16

regions in the future. A training dataset 7 of 100 document pages was randomly sampled
from the selected 978 documents; the remaining 878 document pages are considered as
the test dataset S.

8.2 Algorithm Training

The parameters that a segmentation algorithm is sensitive to are automatically selected
by training the algorithm on the 100-page training dataset 7. A direct search optimiza-
tion procedure [27] is used to search for the optimal parameter value for each algorithm.
A starting point is necessary for the optimization procedure. Based on information about
the document page style, a reasonable working range can be selected for each parame-
ter of each algorithm. We chose a relatively conservative range to make sure that the
true optimum parameter values fell within the range. Six different starting points within
the reasonable working parameter subspace for each research algorithm were randomly
selected and the corresponding six convergence points were obtained. Then we selected
the parameter values corresponding to the maximum of the six optimal parameter values
attained in the six searches. In the following sections, we specify the parameters that
we optimized for each algorithm and the corresponding reasonable working ranges. We
fix the parameters that the algorithm is insensitive to and only train the ones that the
algorithm is sensitive to. The training procedure is conducted on a randomly selected
100-page training dataset 7.

8.2.1 X-Y Cut Algorithm Parameters

The X-Y cut algorithm [25, 26] has four free parameters. Since the algorithm is very
sensitive to all four parameters, we searched for the optimal value for each of the four
parameters over the reasonable working ranges given below:

1. X widest zero valley width threshold T'¢: {20-250 pixels};
2. Y widest zero valley width threshold T\¥: {20-200 pixels};
3. Vertical noise removal threshold T%: {20-100 pixels};

4. Horizontal noise removal threshold Ty: {20-100 pixels}.

Since in most cases the vertical cut is longer than horizontal cut, we set the maximum
of T¢ be larger than that of T¢. Furthermore, since most inter-line gaps are less than
100 pixels, we set the maximum of T'% and Ty to 100 pixels.

8.2.2 Docstrum Algorithm Parameters

O’Gorman in his paper specifies eight parameters for the Docstrum algorithm [28]. We
introduced two additional parameters for textline segmentation control and character
grouping: 1) a superscript-subscript character distance threshold factor for correctly
handing textline segmentation, and 2) a character size ratio threshold to separate larger
characters from dominant characters. The algorithm is insensitive to six of the ten param-
eters. We fixed these six parameters as follows: number of nearest connected components
for clustering, K = 9; low connected component size-threshold, | = 2 pixels; high con-
nected component size-threshold, A = 200 pixels; horizontal angle tolerance threshold,

17

0, = 30°; vertical angle tolerance threshold, #, = 30°; superscript and subscript char-
acter distance threshold factor, f; = 0.4. The values for the four parameters that the
algorithm is sensitive to were searched for in the reasonable working ranges given below:

1. Nearest neighbor threshold factor fi: {1-5};

2. Parallel distance threshold factor f,q,: {2-10};

3. Perpendicular distance threshold factor f,.: {0.5-5};
4. Character size ratio factor fz: {2-10}.

8.2.3 Voronoi-Diagram-Based Algorithm Parameters

Kise’s algorithm has eleven free parameters and is insensitive to seven of them. Six
of these eleven parameters are related to removing noise connected components and
blocks. The algorithm is insensitive to another of these eleven parameters, sw. We fixed
the seven parameters as follows: maximum height and width thresholds of a connected
component, C, = 500 pixels and €, = 500 pixels; maximum connected component aspect
ratio threshold, C, = 5; minimum area threshold of a zone, A, = 50 pixels? for all zones;
and minimum area threshold, A; = 40000 pixels, and maximum aspect ratio threshold,
B, =4, for the zones that are vertical and elongated. The last parameter is the size of
the smoothing window, which is fixed at sw = 2. The optimal values for the other four
parameters are searched for in the following ranges recommended by Kise:

sampling rate sr: {4-T};

Max size threshold of noise connected component nm: {10-40};
Margin control factor for Td2 fr: {0.01-0.5};

Area ratio threshold ta: {40-200}.

o =

8.3 Algorithm Testing

All five algorithms were tested on the 878-page test dataset S. In order to be able to
compare the timing information for each algorithm, we tested all algorithms on the same
machine.

8.4 Hardware and Software Environments

In this section, we provide the details of the hardware and software environments used
for the implementation and training of the research algorithms and the testing of both
the research algorithms and the commercial products.

8.4.1 Implementation

We implemented the X-Y cut and Docstrum algorithms based on [25, 26, 28]. The
platform used for the implementation was an Ultra 1 Sun workstation running the Solaris
2.6 operating system. The compiler used was GNU gcc 2.7.2. In our implementation of
the two research algorithms and the benchmarking algorithm, a DAFS library of Release
1.0alpha0 developed by RAF Technology Inc. [35] was used. Kise [19] provided us with

an implementation of his Voronoi-based segmentation algorithm. We wrote programs in

18

the Visual C+4 5.0 environment to extract zone coordinates from the OCR output of
the two commercial products.

8.4.2 Training Phase

The machines we used for training were Ultra 1,2 and 5 Sun workstations running the
Solaris 2.6 operating system. We used a direct search simplex algorithm for searching for
a set of optimal parameter values for each research algorithm.

8.4.3 Testing Phase

In order to be able to compare the timing information for the algorithms, we tested
them on a single machine, an Ultra 1 Sun workstation running the Solaris 2.6 operating
system. The CPU speed reported by the fpversion UNIX command was 167 MHz.
The two commercial products were tested on a Gateway PC with a 400 MHz Pentium II
CPU running the Windows 95 operating system. We normalized the PC timing to UNIX
timing using the relation {ynyx = 400 - tpe /167 for comparison with the timing of the
research algorithms.

9 Experimental Results and Discussion

In this section, four aspects of the experimental results are reported: training, test, sta-
tistical analysis and error analysis. In the training section, we report optimal parameter
values and training times, show the convergence curves, and discuss the convergence rate
for each research algorithm on the training dataset 7. In the testing section, we report
the performance metric and timing results for all five algorithms on test dataset S. Fur-
thermore, a confidence interval is calculated for the results. In the statistical analysis
section, we compare the performance metric and timing of each possible algorithm pair
using the paired model. In the error analysis section, we report error analysis results
on three different error categories for each algorithm and identify the possible sources
of these errors for each research algorithm. Finally, based on the discussion in the error
analysis section, we provide some recommendations for users to choose appropriate page
segmentation algorithms for their purpose.

9.1 Training Results

Three research algorithms were trained on a 100-page training dataset 7. Table 2, Table 3
and Table 4 report the optimum parameters, optimum performance index (textline accu-
racy) value, and training time corresponding to each randomly selected starting point for
the X-Y cut, Docstrum and Voronoi algorithms respectively. We consider the parameter
values that give the lowest error rate as a set of optimal parameter values for each research
algorithm as shown in Table 1. Figure 4, Figure 5 and Figure 6 show the convergence
characteristics for the X-Y cut, Docstrum and Voronoi algorithms respectively.

The findings from the training results for each research algorithm are summarized as
the follows:

19

Table 1: Optimal parameter values for each research algorithm.

algorithm optimal parameter crror rate | function timing
values value (percent) | evaluations | (hours)
X-Y cut (78,32,35,54) 14.71 86 12.70

Docstrum | (2.578,2.345,0.600,9.930) 5.00 108 7.00
Voronoi (6,11,0.083,200) 4.73 52 6.99

1) The X-Y cut algorithm. From Table 2 and Figure 4, we can make the following
observations:

50.0 T T T T

—— (140,80,50,70)
---- (120,120,10,80)
—— (80,40,70,50)
——- (60,120,10,20)
(100,80,100,50)
—-— (80,20,70,50)

40.0 -

error rate (percent)

10.0 1 1 1 1
0 20 40 60 80

number of function evaluations

100

Figure 4: Convergence curves corresponding to six randomly selected starting points in
the training of the X-Y cut algorithm.

Table 2: Optimization results of the X-Y cut algorithm for six randomly selected starting
points within a reasonable working parameter subspace.

starting parameter | optimal parameter | error rate | number of function | timing
values value (percent) evaluations (hours)
(140, 80, 50, 70) (128,62,23,91) 18.96 98 25.88
(120,120,10,80) (97,107,22,97) 18.57 70 10.45
(80,410, 70, 50) (82,641,21,89) 15.52 58 11.32
(60,120, 10,20) (67,53,21,70) 14.96 92 17.64
(100, 80, 100, 50) (100, 79.100,49) 44.38 23 4.33
(80,20,70,50) (78,32,35,54) 14.71 86 12.70

e The error rates for all starting points (except one) converge in the range of 14.71%

to 18.96%,

o The convergence rate before the first 20 function evaluations is much faster than
that beyond 20 function evaluations,

o Most values of parameter T'¢ are larger than those of parameter Ty,

20

e All values (except those of the outlier point) of parameter T are smaller than
those of parameter T\,

e Except for the unusual point, the variance of the number of function evaluations is
small,

e There is a fair amount of variation in the optimal parameter values.

From the above observations, we can see that the X-Y cut algorithm objective function
has multiple local minima, and the performance at these local minima is not very stable.
The algorithm only needs about 20 function evaluations to reach stable performance.
The vertical cuts are generally longer than horizontal cuts. The vertical inter-zone gaps
are generally wider than horizontal inter-zone gaps.

2) Docstrum algorithm. From Table 3 and Figure 5, we can make the following ob-
servations:

40.0 T T

—— (1.0,4.0,15,4.0)
——- (2.0,3.0,0.3,4.0)
—-— (5.0,4.0,0.3,3.0)
300 ——- (1.0,4.0,2.1,6.0)

—— (3.0,4.0,3.0,7.0)
—-— (3.0,3.0,2.1,9.0)

error rate (percent)

0 50 100 150
number of function evaluations

Figure 5: Convergence curves corresponding to six randomly selected starting points in
the training of the Docstrum algorithm.

Table 3: Optimization results of Docstrum algorithm for six randomly selected starting
points within a reasonable working parameter subspace.

starting parameter optimal parameter error rate | number of function | timing
values value (percent) evaluations (hours)
(1.0,4.0,1.5,4.0) | (2.327,2.344,0.597, 5.223) 5.01 109 15.08
(2.0,3.0.0.3,4.0) | (2.362,2.129,0.597, 3) 5.44 5 10.31
(5.0,4.0,0.3,3.0) | (3.072,2.138,0.302, 3.602) 6.30 115 12.71
(1.0,4.0,2.1,6.0) | (2.537,1.973,0.645,7.551) 5.34 102 13.66
(3.0,4.0.3.0,7.0) | (2.578,2.345,0.600.9.930) 5.00 108 7.00
(3.0,3.0.2.1,9.0) (2.521,2.336,0.595, 10.375) 5.00 139 12,77

e The error rates for all starting points except an outlier converge in the range of

5.00% to 6.30%,

o The convergence rate before the first 50 function evaluations is much faster than
that beyond 50 function evaluations,

21

e The values of parameters f;, f,, and f,. converge to very similar values from all
starting points,

o There is a large variation in the optimal values of parameter f;,

e The total number of function evaluations is larger than those for the X-Y cut and
the Voronoi algorithms.

From the above observations, we can see that the performance of the algorithm stabi-
lizes after about 50 function evaluations, which is much larger than for the X-Y cut
and Voronoi algorithms. The performance of the Docstrum algorithm is insensitive to
large (> 5) values of parameter f;, since for small f;, more connected components are
grouped into the sparse connected component group where the inter-character and inter-
line gap estimation is not accurate, and hence more errors will occur. However, for the
other three parameters, the fact that the optimal values are very close implies the ob-
jective function may have a single “valley” in the neighborhood of these parameter values.

3) Kise’s Area-Voronoi-Diagram-Based algorithm. From Table 4 and Figure 6, we can
make the following observations:

9.0 T T T T

—— (6,25,0.1,80)
——- (7,10,0.1,180)
80 b —-— (6,30,0.3,60) 1
\ —-— (7,15,0.4,120)
g \ ——- (6,35,0.25,120)
£ 70 pl —— (4,25,0.05,140) 1
&
g
5 60 (..]
[R e T iy p———
''''' N oo
5.0]
40
0 20 40 60 80 100

number of function evaluations

Figure 6: Convergence curves corresponding to six randomly selected starting points in
the training of the Voronoi algorithm.

Table 4: Optimization results of the Voronoi algorithm for six randomly selected starting
points within a reasonable working parameter subspace.

starting parameter | optimal parameter | error rate | number of function | timing

values value (percent) evaluations (hours)
(6.25,0.1,80) (6.15,0.084,108) 4.80 44 8.77
(7,10,0.1,180) (6.11.0.083,200) 4.73 52 6.99
(6.30.0.3,60) (6.11.0.146, 149) 5.31 94 24.11
(7,15,0.4,120) (8,11,0.0977,191) 5.17 74 19.17
(6,35,0.25,120) (6,11,0.246,193) 5.52 66 8.69
(4,25,0.05,140) (4,11,0.134,161) 5.49 43 7.17

22

e The error rates for all starting points converge in the range of 4.73% to 5.52%,

o The convergence rate before the first 20 function evaluations is much faster than
that beyond 20 function evaluations,

e The value parameter nm for most (five) starting points converges to 11 pixels,

o There is a relatively small variance in the convergence values of parameters sr and

ta,

o There is a relatively large variance in the convergence values of parameter fr,

o There is a relatively large variance in the number of function evaluations corre-
sponding to the six starting points,

From the above observations, we can see that the Voronoi algorithm objective function
has multiple local minima, but the performance at these local minima is stable. The
algorithm needs only about 20 function evaluations to reach a stable performance. The
optimal algorithm performance is insensitive to the value of parameter fr. The fact that
the optimal value of parameter ta is big implies that the text and non-text connected
components are well separated. The fact that the values of parameter fr are generally
small indicates that we should choose a conservative (large) interline spacing threshold.

9.2 Testing Results

All five algorithms were tested on a 878-page test dataset S with their respective optimum
parameters. Table 5 reports the performance index (textline accuracy) and average
algorithm timing on the test dataset S. Figure 7 gives a bar-chart representation of the
testing results for each evaluated algorithm.

Table 5: Algorithm testing results and the corresponding 95% confidence intervals. The
average time per page is also reported. The times taken by the two commercial products
were normalized for the processor speed differences between the PC and the SUN.

Performance Index Average Processing Time
(p("r(',(“]li\) (S(“,(',()TI(]S)
Voronoi 91.61 £ 0.78 9.09 £ 0.18
Docstrum 94.11 + 0.99 15.43 £ 0.32
X-Y cut 82.94 £ 1.61 6.37 £ 0.07
Caere 93.97 £+ 0.85 2.02 £ 0.01, (normalized) 1.84 £ 0.01
ScanSoft 87.29 £ 1.35 3.13 £ 0.04, (normalized) 7.52 £+ 0.10

From the testing results, we see that the Voronoi-based , Docstrum, and Caere algo-
rithms have similar performance indices which are better than that of ScanSoft’s algo-
rithm, which in turn is better than that of the X-Y cut algorithm. Caere’s segmentation
algorithm has the least average processing time, whereas Docstrum has the greatest av-
erage processing time. The connected component labeling method we used for Docstrum
may not be the optimum one, and hence its timing may be further improved.

For comparison purposes, an evaluator always likes to know if the performance index
and processing time differences between algorithms is statistically significant or not,

23

Performance Index (text-line accuracy) Algorithm Timing

100 20.0

Ealea

90 -

80

Text-line Accuracy (percent)
Average Timing per Page (second)
.

S
°

U 0ml]

Voronoi Docstrum X-Y Cut Caere ScanSoft Voronoi Docstrum X-Y Cut Caere ScanSoft
Segmentation Algorithm Segmentation Algorithm

(a) (b)

Figure 7: The first three algorithms in the bar chart are reseach algorithms, and the last
two algorithms are commercial products. (a) shows the testing results of the performance
index (textline accuracy) for each algorithm. A 5% level ¢-test indicates that the perfor-
mances of Voronoi, Docstrum and Caere are not significantly different, but the three are
significantly better than ScanSoft, which in turn is significantly better than X-Y cut. (b)
shows the algorithm timing testing results for each algorithm. A 5% level ¢-test indicates
that each algorithm’s timing is significantly different from that of any other algorithm.
From the fastest to the slowest algorithm timing, the algorithms are ranked as: Caere,
X-Y cut, ScanSoft, Voronoi and Docstrum.

especially for those algorithms with similar performance index values. This is addressed
in the following section.

9.3 Statistical Analysis of Results

We employed a paired model [18] to compare the performance index and testing time
differences between each possible algorithm pair, and then compute their confidence
intervals. The analysis results for performance index and processing timing are reported
in matrix form in Table 6 and Table 7 respectively. If we denote by T;; the value of
the table cell in the 7th row and jth column, T;; = a; — a; where «; is the performance
index (algorithm timing) value of the algorithm in the ith row, and a; is the performance
index (algorithm timing) value of algorithm in the jth column. Note that the normalized
processing timing is used for the two commercial products.

From Table 6, we find that the differences between the performance indices of Kise’s
algorithm, Caere’s segmentation algorithm, and Docstrum are not statistically significant,
but they are significantly better than those of ScanSoft’s segmentation algorithm and
the X-Y cut algorithm. Moreover, the performance index of ScanSoft’s segmentation
algorithm is significantly better than that of the X-Y cut algorithm. From Table 7, we
can find that the processing times of all algorithms differ significantly from one another.
From the fastest processing time to the slowest processing time, the algorithms are ranked
as Caere’s segmentation algorithm, X-Y cut, ScanSoft’s segmentation algorithm, Kise,
and Docstrum. For Docstrum, a better connected component labeling algorithm might
improve its timing performance.

24

Table 6: Paired model statistical analysis results on the difference between a pair of
performance indexes (in percent) and the corresponding 95% confidence intervals. A (*)
indicates that the difference is statistically significant at o = 0.05, and no (*) indicates
that the difference is not significant. We see that there is no significant difference between
the Voronoi, Docstrum and Caere algorithms. However, this group is significantly better

than Scansoft, which is in turn is better than XY-cut.

Caere Docstrum ScanSolt X-Y cut

Voronoi 0.66 &+ 1.17 | 0.52 + 1.23 7.33 + 1.55 (%) 11.69 + 1.80 (*)
Poat = 013 | Pot = 0.20 | Powi = 9.02E — 20 | Pouy = 2.29F — 34

Caere - -0.13 £ 1.09 6.67 £ 1.38 (*) 11.01 + 1.67 (*)
Pt =040 | Py = 1265 —20 | Py = 1.215 — 35

Docstrum - - 6.81 £ 1.59 (*) 11.18 £ 1.79 (%)
P, =8.06E —17 | Py =4.61E — 32

ScanSoft 4.36 + 1.87 (%)
Poar = 2.79F — 06

Table 7: Paired model statistical analysis results on the difference in processing times
(seconds) and the corresponding 95% confidence intervals. A (*) indicates the difference
is statistically significant at o = 0.05 and no (*) implies the difference is not significant.
We see that from the least to the greatest averge processing time, the algorithms are
ranked as: Caere, X-Y cut, ScanSoft, Voronoi and Docstrum.

Caere Docstrum ScanSolt X-Y cul

Voronoi 4.25 + 0.16 (*) | -6.35 + 0.18 (*) 1.57 4+ 0.20 (%) 2.72 + 0.13 (%)
Pout = 0 Pou = 0 Pyt = 1.91F — 48 Pout = 0

Caere - -10.59 £ 0.29 (%) | -2.68 £ 0.10 (*) -1.53 + 0.05 (%)
Pu=0 Pau=0 P =0

Docstrum B - 7.91 £ 0.32 (%) 9.06 £ 0.26 (*)
Puul =0 Puul =0

ScanSoft - - - 1.15 £+ 0.12 (*)

P =1.06E — 66

9.4 Error Analysis

Error analysis is crucial to interpreting the functionalities of the evaluated algorithms.
Each algorithm has different weakness. Figure 8 shows the error analysis results of three
error types for each algorithm.

We can see that among the research algorithms, X-Y cut has a much larger split
textline error rate than the Voronoi and Docstrum algorithms. This is mainly due to the
fact that the two zone cut thresholds (or widest zero valley thresholds) T¢ and T\ and
the two noise removal thresholds T'% and Ty are global thresholds that are fized for each
document image, whereas in the Voronoi and Docstrum algorithms, the inter-character
and inter-line spacings are estimated for each individual document image. Titles with
wide inter-character and inter-word spacings, numbered text lists and textlines with
irregular character spacings in some document images make
the spacing parameter estimation inaccurate in both the Voronoi-based and Docstrum
algorithms, and hence contribute to the split textline error rates in these two algorithms.

25

Split Text-line Error Horizontally Merged Text-line Error Miss-detected Text-line Error

15.0 10.0 15

8.0

»-
S
°

6.0 -

40

’_}H{—‘ = ﬁﬁ 8 e R I

Voronoi Docstrum X-Y Cut Caere ScanSoft Voronoi Docstrum X-Y Cut Caere ScanSoft Voronoi Docstrum X-Y Cut Caere ScanSoft
Segmentation Algorithm Segmentation Algorithm Segmentation Algorithm

(a) (b) ()

Figure 8: This figure three types of errors. (a) shows the page error rate as the ratio of
the number of groundtruth textlines whose bound boxes are split and the total number of

Error Rate (percent)
Error Rate (percent)

o
°

groundtruth textlines. We denote this error category as split error. We can see that a 5%
level {-test indicates that the error rates of ScanSoft and X-Y Cut are not significantly
different, but they are siginificantly higher than those of the other three algorithms.
Moreover, the error rate of Voronoi, Docstrum and Caere are significantly different from
each other. (b) shows the page error rate as the ratio of the number of groundtruth
textlines that are horizontally merged and the total number of groundtruth textlines.
We denote this error category as Horizontal Merge error. We can see that a 5% level ¢-
test indicates that the error rate of all five algorithms are significantly different from each
other. (c¢) shows the page error rate as the ratio of the number of groundtruth textlines
that are missed and the total number of groundtruth textlines. We denote this error
category as missed detection error. We can see that the rate of this error type is much
smaller than those of the other two error types. From the lowest to the highest error
rate, the algorithms are ranked as: Docstrum, Voronoi, Caere, X-Y cut and ScanSoft.

However, these error rates are much smaller than that of X-Y cut. We can see that
among the research algorithms, X-Y cut has the largest horizontally merged textline
error rate, Docstrum has the second highest such error rate, and Voronoi has the lowest.
This occurs primarily for the following reasons: 1) There are pages that have “L”-shaped
thick, long noise blocks at the edges, which cannot be cut through in either the X or
Y direction by the noise removal thresholds T% and Ty of the X-Y cut algorithm, so
that many text regions under these noise blocks are merged together. 2) In Docstrum’s
implementation, the huge noise blocks encountered by the X-Y cut algorithm are filtered
out in a preprocessing step, so that they do not affect connected component and textline
clustering procedures. Also, Docstrum estimates inter-character and inter-line spacing for
each individual document image. 3) In the Voronoi-based algorithm’s implementation,
in addition to what has been done for Docstrum, Kise uses not only the spacing of the
connected components but also their area ratios to generate zone boundaries. Hence a
few lines or noise blocks between text regions do not cause horizontal merges, whereas
they do cause horizontal merges in the Docstrum algorithm. This is the main reason why
Docstrum has more horizontally merged textlines than the Voronoi-based algorithm. We
can see that among the research algorithms, the X-Y cut has the highest mis-detection
error rate while Voronoi and Docstrum have negligible error rates. This is again due to
the global thresholds of the X-Y cut algorithm which cause textlines such as headers,

26

footers, authors and page numbers that are not aligned with text blocks to be considered
as noise regions and hence not to be detected.

9.5 Recommendations

Based on the discussion in the last section, we feel that some recommendations maybe
useful to users who can make a choice among page segmentation algorithms. We sum-
marize our recommendations about the three research algorithms as follows:

e For segmentation of document pages with big skew angles or big noise blocks (es-
pecially “L”-shaped, “U”-shaped or close-shaped thick noise bars), the X-Y cut
algorithm is a bad choice.

e For segmentation of document pages with lines separating zones, the Voronoi-based
algorithm is a better choice than either the Docstrum or X-Y cut algorithm.

e For segmentation of document images with a large font size range, irregular inter-
character or inter-line spacing, few noise blocks, and negligible skew angles, X-Y
cut is a better choice than either the Voronoi-based or Docstrum algorithms.

e The Voronoi-based algorithm is preferred over the Docstrum algorithm in general.

o For the X-Y cut algorithm, first remove big noise blocks by labeling connected
components and then removing the larger ones. labeling and then remove big noise

blocks.

10 Conclusions

We have proposed a five-step performance evaluation methodology for evaluating page
segmentation algorithms: 1) First we randomly partition the dataset D into a mutu-
ally exclusive training dataset 7 and test dataset S with both textline level and zone
level groundtruth, 2) we then define textline accuracy as the performance metric, 3) The
Nelder-Mead simplex search algorithm is then used to search automatically for the opti-
mal parameter values of the segmentation algorithms, 4) the segmentation algorithms are
then evaluated on the test dataset S using their corresponding optimal parameter values,
and finally 5) a paired-model statistical analysis and an error analysis are performed to
provide confidence intervals and testing hypothesis regarding the performance indices
and algorithm timings. The errors of three research algorithms were analyzed in terms of
mis-detection, split and horizontal merge error types. We found that the performances of
the Voronoi, Docstrum and Caere segmentation algorithms are not significantly different
from one another, but they are significantly better than that of ScanSoft’s segmentation
algorithm, which in turn is significantly better than that of X-Y cut. We also found
that the timings of the algorithms are significantly different from one another. From the
fastest to the slowest, the algorithms are ranked as Caere, X-Y cut, ScanSoft, Voronoi
and Docstrum. In the error analysis, we found that X-Y cut has the most split and hor-
izontal merge errors due to its global thresholds, Voronoi has the least horizontal merge
errors due to its usage of area ratio information of connected components, and Caere has

27

the least split error. We intend to extend this work to evaluation of tables, graphs and
half-tone images.

Acknowledgement

We would like to thank Dr. Paul Smith of Department of Mathematics for discussions
on various statistical issues; Dr. Kise of the Osaka Prefecture University for providing
us with a software implementation of his segmentation algorithm and modifying it for
our evaluation purposes; Mindy Bokser of Caere Corporation provided us with the Caere
page segmentation software; Dr. Henry Baird of Xerox Corporation for introducing us
to Kise’s algorithm; Greg Marton of the University of Maryland for his help in obtain-
ing experimental data; and Dr. Azriel Rosenfeld of the University of Maryland for his
comments.

We would also like to thank Steve Dennis and Glenn Van Doren of the Department
of Defense and Melissa Holland and Jeff DeHart of the Army Research Laboratory for
supporting this work. This research was funded in part by the Department of Defense
and the Army Research Laboratory under Contract MDA 9049-6C-1250.

References

[1] H. Baird. Background structure in document images. [International Journal of
Pattern Recognition and Artificial Intelligence, 8:1013-1030, 1994.

[2] H. S. Baird, S. E. Jones, and S. J. Fortune. Image segmentation by shape-directed
covers. In Proceedings of International Conference on Pattern Recognition, pages

820-825, Atlantic City, NJ, June 1990.

[3] K. W. Bowyer and P. J. Phillips, editors. Empirical Fvaluation Techniques in Com-
puter Vision, Santa Barbara, CA, June 1998.

[4] M. J. Box. A comparison of several current optimization methods, and the use of
transformations in constrained problems. Computer Journal, 9:67-77, 1966.

[5] T. Breuel and M. Worring, editors. Document Layout Interpretation and its Appli-
cations, Bangalore, India, September 1999.

[6] Caere Co. Caere Developer’s Kit 2000.

[7] L. A. Fletcher and R. Kasturi. A robust algorithm for text string separation from
mixed text/graphics images. IKEE Transactions on Pattern Analysis and Machine
Intelligence, 10:910-918, 1988.

[8] P. E. Gill, W. Murray, and M. H. Wright. Practical Optimization, chapter 4. Aca-
demic Press, London and New York, 1993.

[9] D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning.
Addison-Wesley, Reading, MA, 1989.

28

[10]

[11]

[12]

[13]

[17]

[18]

[20]

[21]

[22]

R. M. Haralick and P. Meer, editors. Performance versus Methodology in Computer
Vision, Seattle, WA, June 1994.

R. M. Haralick and L. G. Shapiro. Computer and Robot Vision. Addison-Wesley,
Reading, MA, 1992.

R. M. Haralick, S. R. Sternberg, and X. Zhuang. Image analysis using mathematical
morphology. [EEE Transactions on Pattern Analysis and Machine Intelligence,
9:523-550, 1987.

A. Hoover, G. Jean-Baptiste, X. Jiang, P. J. Flynn, H. Bunke, D. B. Goldof, K. W.
Bowyer, D. W. Eggert, A. Fitzgibbon, and R. B. Fisher. An experimental comparison
of range image segmentation algorithms. IEEFE Transactions on Pattern Analysis

and Machine Intelligence, 18:673-689, 1996.

J. J. Hull. Performance evaluation for document analysis. International Journal of

Imaging Systems and Technology, 7:357-362, 1996.

A. K. Jain and B. Yu. Document representation and its application to page de-
composition. [EEE Transactions on Pattern Analysis and Machine Intelligence,

20:294-308, 1998.

J. Kanai, 5. V. Rice, T. A. Nartker, and G. Nagy. Automated evaluation of OCR
zoning. IEEFE Transactions on Pattern Analysis and Machine Intelligence, 17:36-90,
1995.

T. Kanungo, M. Y. Jaisimha, J. Palmer, and R. M. Haralick. A methodology for
quantitative performance evaluation of detection algorithms. IEFEE Transactions on

Image Processing, 4:1667-1674, 1995.

T. Kanungo, G. A. Marton, and O. Bulbul. OmniPage vs. Sakhr: Paired model
evaluation of two Arabic OCR products. In Proceedings of SPIE Conference on
Document Recognition, volume 3651, pages 109120, San Jose, CA, January 1999.

K. Kise, A. Sato, and M. Iwata. Segmentation of page images using the area Voronoi
diagram. Computer Vision and Image Understanding, 70:370-382, 1998.

V. Laarhoven and E. H. L. Aarts. Simulated Annealing: Theory and Applications.
Reidel Publishing Co., Dordrecht, The Netherlands, 1989.

R. M. Lewis, V. Torczon, and M. W. Trosset. Why pattern search works. OPTIMA,
59:1-7, 1998.

J. Liang, 1. T. Phillips, and R. M. Haralick. Performance evaluation of document
layout analysis algorithms on the UW data set. In Proceedings of SPIE Conference
on Document Recognition, volume 3027, pages 149-160, San Jose, CA, February
1997.

29

23]

30]

31]

32]

33]

[34]

[35]
[36]

37]

S. Mao and T. Kanungo. Empirical performance evaluation of page segmentation
algorithms. In Proceedings of SPIE Conference on Document Recognition, San Jose,
CA, January 2000. to appear.

G. Matheron. Random Sets and Integral Geometry. Wiley, New York, 1975.

G. Nagy and S. Seth. Hierarchical representation of optically scanned documents.
In Proceedings of International Conference on Pattern Recognition, volume 1, pages

347-349, Montreal, Canada, July 1984.

G. Nagy, 5. Seth, and M. Viswanathan. A prototype document image analysis
system for technical journals. Computer, 25:10-22, 1992.

J. Nelder and R. Mead. A simplex method for function minimization. Computer

Journal, 7:308-313, 1965.

L. O’Gorman. The document spectrum for page layout analysis. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 15:1162-1173, 1993.

L. O’Gorman and R. Kasturi. Document Image Analysis. IEEE Computer Society
Press, Los Alamitos, CA, 1995.

T. Pavlidis and J. Zhou. Page segmentation and classification. Graphical Models
and Image Processing, 54:484-496, 1992.

L. Phillips. User’s Reference Manual. CD-ROM, UW-III Document Image Database-
I1I.

[. T. Phillips and A. K. Chhabra. Empirical performance evaluation of graphics
recognition systems. [EFE Transactions on Pattern Analysis and Machine Intelli-

gence, 21:849-870, 1999.

P. J. Phillips, H. Moon, S. A. Rizvi, and P. J. Rauss. The FERET evaluation
methodology for face-recognition algorithms. Technical Report NISTIR 6264, Na-
tional Institute of Standards and Technology, Gaithersburg, MD, 1999.

M. J. D. Powell. Direct search algorithms for optimization calculations. Acta Nu-

merica, 7:287-336, 1998.
RAF Technology, Inc. DAFS Library Programmer’s Guide and Reference.

S. Randriamasy and L. Vincent. Benchmarking page segmentation algorithms. In
Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pages
411-416, Seattle, WA, June 1994.

S. Randriamasy, L. Vincent, and B. Wittner. An automatic benchmarking scheme
for page segmentation. In Proceedings of SPIE Conference on Document Recognition,
volume 2181, pages 217-230, San Jose, CA, February 1994.

30

38]

[39]
[40]

[41]

[42]

[43]

[44]

[45]

S. V. Rice, F. R. Jenkins, and T. A. Nartker. The fifth annual test of OCR accuracy.
Technical Report TR-96-01, University of Nevada, Las Vegas, NV, 1996.

ScanSoft Co. TextBridge: Application Programmer’s Interface.
ScanSoft Co. XDOC' Data Format.

B. K. Schnabel. An investigation into the effects of random error on a selection of
current minimization methods. Master’s thesis, University of Leeds, UK, 1966.

J. Serra. Image Analysis and Mathematical Morphology. Academic Press, New York,
1982.

F. Wahl, K. Wong, and R. Casey. Block segmentation and text extraction in mixed
text/image documents. Graphical Models and Image Processing, 20:375-390, 1982.

M. H. Wright. Direct search methods: Once scorned, now respectable. In D. F. Grif-
fiths and G. A. Watson, editors, Numerical Analysis 1995, pages 191-208. Addison
Wesley, Longman (Harlow), 1996.

B. A. Yanikoglu and L. Vincent. A complete environment for ground-truthing
and benchmarking document page segmentation. Pattern Recognition, 31:1191-204,
1998.

31

