
Software Speci�cation of PSET |

A Page Segmentation Evaluation Toolkit

Version 1.01

Song Mao and Tapas Kanungo

Language and Media Processing Lab

Center for Automation Research

University of Maryland

College Park, MD 20742

kanungo@cfar.umd.edu

September 29, 2000

2

Contents

1 Introduction 11

2 The Page Segmentation Problem 13

3 Performance Evaluation Methodology 15

4 Algorithm Description 17

4.1 Page Segmentation Algorithm 17

4.1.1 The X-Y Cut Page Segmentation Algorithm 17
4.1.2 The Docstrum Page Segmentation Algorithm 18
4.1.3 The Voronoi-Diagram-Based Page Segmentation Algo-

rithm . 20
4.2 The Textline-based Error Metric and Benchmark (Error Counter)

Algorithm . 20
4.2.1 Page Segmentation De�nition 21
4.2.2 Error Measurements and Metric De�nitions 21
4.2.3 Benchmark (Error Counter) Algorithm 24

4.3 The Training Algorithm . 24

5 Architecture, File Formats, and Evaluation Methodology 29

5.1 Architecture and File Formats 29
5.2 Implementing the Evaluation Methodology 31
5.3 Algorithm Calling Mode in the Segmentation AlgorithmModule 38

6 Tutorial 43

6.1 Basic Integration Elements . 43
6.2 Development Environments 44
6.3 Examples . 44

3

4 CONTENTS

6.3.1 Use a Page Segmentation Algorithm 44
6.3.2 Use the Textline-Based Benchmarking Algorithm . . . 44

7 Command Line Speci�cation 49
7.1 The X-Y Cut Page Segmentation Algorithm Command 49
7.2 The Docstrum Page Segmentation Algorithm Command . . . 50
7.3 The Voronoi-Based Segmentation Algorithm Command 50
7.4 The Algorithm Training Command 51
7.5 The Algorithm Testing Command 52

8 Data Structures 53

9 Function Speci�cations 75

List of Figures

4.1 The X-Y Cut segmentation algorithm. 18

4.2 The Docstrum segmentation algorithm. 19

4.3 The Voronoi-based segmentation algorithm. 20

4.4 Samples of a benchmark algorithm parameter �le (bpr) (a)
and a weight �le (wgt) (b). 22

4.5 The Textline-Based benchmarking algorithm. 24

4.6 Experiment Example . 26

4.7 The Simplex optimization algorithm. 27

4.8 Simplex operations . 28

5.1 Overall PSET architecture. The left half of the architecture
represents the training phase; the right half represents the test-
ing phase. Note that in the testing phase, the optimal page
segmentation parameter found in the training phase is used.
The training and testing phases use the same performance
metric related input �les (benchmark algorithm parameter �le
(bpr) and weight �le (wgt)) and the same segmentation algo-
rithm shell �le (sh). 30

5.2 Input �le formats. The training protocol �le format is shown
in (a), the test protocol �le format is shown in (b), and the al-
gorithm parameter �le format is shown in (c). The description
of the attributes in (a) and (b) is given in (d). 32

5.3 The training report �le format. The format is shown in (a)
and the description of each column entry in (a) is shown in (b). 33

5.4 The test report �le format. The format is shown in (a) and
the description of each column entry in (a) is shown in (b). . . 34

5

6 LIST OF FIGURES

5.5 Parameter reading stage of the training phase (a) and the
testing phase (b). At this level, various parameter �les are
read into their corresponding data structures which are fed
into the Train and Test modules. 35

5.6 The Train module. In this module, the objective function is
optimized over a given training dataset. Two �les are gener-
ated by this module, a train report �le (trr) and an optimal
segmentation algorithm parameter �le (spr). 36

5.7 Software architectures of the objective function module and
the test module. Module A represents the page segmentation
algorithmmodule, module B represents the page segmentation
error counter and scoring module, and module C represents
the objective function module. The test module in (b) has
sub-modules similar to those in (a). It also has a module for
computing a �nal testing performance score (average textline
accuracy). 37

5.8 Sample protocol �les. From both the train protocol �le (a)
and the test protocol �le (b), we can see that the list �les of
the training dataset and test dataset are train.lst and test.lst
respectively, the optimization algorithm used is the Simplex
algorithm, the benchmarking algorithm used is the Textline-
based algorithm, the page segmentation algorithm trained is
the Docstrum algorithm, and the page segmentation algorithm
tested is the X-Y cut algorithm. We can also �nd the locations
of the groundtruth �les, image �les and training and test result
�les. Moreover, the su�xes for various �les are given for �le
name manipulation in the PSET API. 38

5.9 Samples of an optimization algorithm parameter �le (opr) and
a segmentation algorithm parameter �le (spr). A sample �le
for the Simplex optimization algorithm is shown in (a) and a
sample �le for the X-Y cut segmentation algorithm is shown
in (b). Their detailed parameter descriptions can be found in
[10]. 39

LIST OF FIGURES 7

5.10 Samples of a training report �le format (a) and a test report
�le format (b). The comment lines provide experimental envi-
ronment information about the training and test experiments.
They are automatically generated by calling various GNU C
functions. They are crucial for replicating experimental re-
sults. In the data area, both intermediate information and
�nal results are recorded. This information can be used to an-
alyze the convergence properties of the training process and to
study the statistical signi�cance of the test experiment results.
A detailed description of each column entry can be found in
Figure 5.3(b) and Figure 5.4(b). 40

5.11 A sample shell �le. 40
5.12 Page segmentation algorithm calling modes: function call and

shell call. The left half represents the function calling mode
and the right half represents the shell calling mode. The shell
calling mode can be used only when the algorithm executable
is available; otherwise the function calling mode can be used.
Note that the executable is called by the function sh c. 41

6.1 sample1.c: A sample code to use the X-Y cut page segmen-
tation algorithm by calling the algorithm function. 45

6.2 The UNIX command line usage of the X-Y cut page seg-
mentation algorithm. A001BIN.TIF is the input image and
A001.dafs is the output segmentation result �le in DAFS for-
mat. 45

6.3 sample2.c: A sample code to use the textline-based bench-
marking algorithm by calling the algorithm function. 46

6.4 The make�le for the code in Figure 6.3 and Figure 6.1. 47

8 LIST OF FIGURES

List of Tables

4.1 Summary of error measurements and the corresponding sym-
bols de�ned in this section. 23

5.1 Summary of the �le formats in the PSET package. 31

9

10 LIST OF TABLES

Chapter 1

Introduction

It is important to quantitatively monitor progress in any scienti�c �eld. The
information retrieval community and the speech recognition community, for
example, have yearly competitions in which researchers evaluate their latest
algorithms on clearly de�ned tasks, datasets, and metrics. To make such eval-
uations possible, researchers have access to standardized datasets, metrics,
and freely available software for scoring the results produced by algorithms
[18, 1].

In the Document Image Analysis area, regular evaluations of OCR ac-
curacy have been conducted by UNLV [2]. Page segmentation algorithms,
which are crucial components of OCR systems, were at one time evaluated
by UNLV based on the �nal OCR results, but not on the geometric results
of the segmentation. Recently [12], we empirically compared various com-
mercial and research page segmentation algorithms, using the University of
Washington dataset. We used a well-de�ned (geometric) line-based met-
ric and a sound statistical methodology to score the segmentation results.
Furthermore, unlike the UNLV evaluations, we trained the segmentation al-
gorithms prior to evaluating them.

In this document we describe in detail the software speci�cation of a
package called PSET, which we used in [12] to evaluate page segmentation
algorithms. This package was developed by us at the University of Maryland
and will be made available to researchers at no cost. Publication of the pack-
age will allow researchers to implement our �ve-step evaluation methodology
and evaluate their own algorithms.

Software architecture can be described using methods such as Petri Nets
and Data Flow Diagrams [7]. We describe the architecture of PSET, the

11

12 CHAPTER 1. INTRODUCTION

I/O �le formats, etc. using Object-Process Diagrams (OPDs) [5], which are
similar in spirit to Petri Nets.

The package, called the Page Segmentation Evaluation Toolkit (PSET),
is modular, written using the C language, and runs on the SUN/UNIX plat-
form. The software has been structured so that it can be used at the UNIX
command line level or compiled into other software packages by calling API
functions. The description in this document will aid users in using, updating,
and modifying the PSET package. It will also help users to add new algo-
rithm modules to the package and to interface it with other software tools
and packages. The PSET package includes three research page segmentation
algorithms; 1 a textline-based benchmarking algorithm; and a Simplex-based
optimization algorithm for estimating algorithm parameters from training
datasets.

This document is organized as follows. In Chapter 2, we discuss the
page segmentation problem. In Chapter 3, we present our �ve-step page
segmentation performance evaluation methodology. In Chapter 4, we give a
detailed description of all algorithms in the PSET package. In Chapter 5, we
describe the architecture and �le formats of our PSET package in detail and
show how to implement each step of our �ve-step performance evaluation
methodology. In Chapter 6, we show several examples of how to call the
PSET API functions. In Chapter 7, we describe command lines of the PSET
package. In Chapter 8, we describe each data structure in the PSET package.
Finally in Chapter 9, we describe each function in the PSET package.

1We implemented the X-Y cut algorithm [13] and the Docstrum algorithm [15]. Kise
[9] provided us the C implementation of his Voronoi-based algorithm.

Chapter 2

The Page Segmentation
Problem

There are two types of page segmentation, physical and logical. Physical page
segmentation is a a process of dividing a document page into homogeneous
zones. Each of these zones can contain one type of object. These objects can
be of type text, table, �gure, halftone image, etc. Logical page segmentation
is a process of assigning logical relations to physical zones. For example,
reading order labels order the physical zones in the order in which they
should be read. Similarly, assigning section and sub-section labels to physical
zones creates a hierarchical document structure. In this document, we focus
on physical page segmentation and refer to it as simply page segmentation
hereafter.

Page segmentation is a crucial preprocessing step for an OCR system. In
many cases, OCR engine recognition accuracy depends heavily on page seg-
mentation accuracy. For instance, if a page segmentation algorithm merges
two text zones horizontally, the OCR engine will recognize text across text
zones and hence generate unreadable text. Page segmentation algorithms
can be categorized into three types: top-down, bottom-up, and hybrid ap-
proaches. Top-down approaches iteratively divide a document page into
smaller zones according to some criterion. The X-Y cut algorithm developed
by Nagy et al. [13] is a typical top-down algorithm. Bottom-up approaches
start from document image pixels, and iteratively group them into bigger
regions. The Docstrum algorithm of O'Gorman [15] and the Voronoi-based
algorithm of Kise et al. [9] are representative bottom-up approaches. Hybrid
approaches are usually a mixture of top-down and bottom-up approaches.

13

14 CHAPTER 2. THE PAGE SEGMENTATION PROBLEM

The algorithm of Pavilidis and Zhou [16] is an example of the hybrid ap-
proach that employs a split-and-merge strategy.

Chapter 3

Performance Evaluation
Methodology

In order to objectively evaluate page segmentation algorithms, a performance
evaluation methodology should take into consideration the performance met-
ric, the dataset, the training and testing methods, and the methodology of
analyzing experimental results. In this chapter, we introduce a �ve-step
methodology that we proposed earlier [12, 10, 11]. The PSET package is an
implementation of this methodology.

Let D be a given dataset containing (document image, groundtruth) pairs
(I;G), and let T and S be a training dataset and a test dataset respectively.
The �ve-step methodology is described as follows:

1. Randomly divide the dataset D into two mutually exclusive datasets:
a training dataset T and a test dataset S. Thus, D = T [S and
T \ S = �, where � is the empty set.

2. De�ne a computable performance metric �(I;G;R): Here I is a docu-
ment image, G is the groundtruth of I, and R is the OCR segmentation
result on I. In our case, �(I;G;R) is de�ned as textline accuracy, as
described in the Appendix.

3. Given a segmentation algorithm A with a parameter vector pA; auto-
matically search for the optimal parameter value p̂A for which an objec-
tive function f(pA;T ; �;A) assumes the optimal value on the training
dataset T . In our case, this objective function is de�ned as the average

15

16 CHAPTER 3. PERFORMANCE EVALUATION METHODOLOGY

textline error rate on a given training dataset:

f(pA;T ; A; �) =
1

#T

2
4 X

(I;G)2T

1� �(G;SegA(I;p
A))

3
5 :

4. Evaluate the segmentation algorithm A with the optimal parameter p̂A

on the test dataset S by

�
�
f�(G;SegA(I; p̂

A))j(I;G) 2 Sg
�

where � is a function of the performance metric � on each (document
image, groundtruth) pair (I;G) in the test dataset S, and SegA(�; �)
is the segmentation function corresponding to A. The function � is
de�ned by the user. In our case,

�
�
f�(G;SegA(I; p̂

A))j(I;G) 2 Sg
�
= 1� f(p̂A;S; �;A);

which is the average of the textline accuracy �(G;SegA(I; p̂A)) achieved
on each (document image, groundtruth) pair (I;G) in the test dataset
S.

5. Perform a statistical analysis to evaluate the statistical signi�cance of
the evaluation results, and analyze the errors to identify/hypothesize
why the algorithms perform at their respective levels.

Chapter 4

Algorithm Description

In this chapter, we �rst describe three research page segmentation algorithms,
then we describe the textline-based benchmarking algorithm, and �nally we
describe the Simplex optimization algorithm.

4.1 Page Segmentation Algorithm

Page segmentation algorithms can be categorized into three classes: top-
down approaches, bottom-up approaches and hybrid approaches. We imple-
mented the X-Y cut algorithm (a top-down algorithm) and the Docstrum
algorithm (a bottom-up algorithm). Kise provided us a C implementation
of his Voronoi-based algorithm (a bottom-up algorithm). Two commercial
products, Caere's segmentation algorithm [4] and ScanSoft's segmentation
algorithm [17], were selected for evaluation. They are representative state-
of-art commercial products. Both are black-box algorithms with no free
parameters. In the following subsections, we describe the three research al-
gorithms.

4.1.1 The X-Y Cut Page Segmentation Algorithm

The X-Y cut segmentation algorithm [13] is a tree-based, top-down algo-
rithm. The root node of the tree represents the entire document page image
I, an interior node represents a rectangle on the page, and all the leaf nodes
together represent the �nal segmentation. While this algorithm is easy to
implement, it can only work on deskewed document pages with Manhattan

17

18 CHAPTER 4. ALGORITHM DESCRIPTION

layout and rectangular zones. The algorithm works as shown in Figure 4.1.

1. Create the horizontal and vertical pre�x sum tables HX and HY as follows:
HX [i][j] = #fp 2 D(I)jX(p) = j; Y (p) � i; I(p) = 1g;
HY [i][j] = #fp 2 D(I)jX(p) � j; Y (p) = i; I(p) = 1g;
where D(I) � Z2 is the domain of the image I and I(p) is the binary value of
the image at pixel p, and X(p) and Y (p) are the X and Y coordinates of the
pixel p respectively.

2. Initialize a tree with the entire document image as the root node. For each node
do the following:

(a) Compute X and Y black pixel projection pro�le histograms of the current
node as follows:
HISX[i] HX [Y2(Z)][i]�HX [Y1(Z)][i];
HISY [j] HY [j][X2(Z)]�HY [j][X1(Z)];
where Z is the zone corresponding to the current node, and (X1(Z); Y1(Z))
and (X2(Z); Y2(Z)) are upper-left and lower-right points of the zone.

(b) Shrink each current zone bounding box until it \tightly" encloses the the
zone body. Noise removal thresholds T n

X and T n
Y are then used to classify

and remove background noise pixels. Since noise pixels in the background
are assumed to be distributed uniformly, the noise removal thresholds T n

X

and T n
Y for a particular node are scaled linearly based on the current zone's

width and height.

(c) Repeat step 2a.

(d) Obtain the widest zero valleys VX and VY in the X and Y projection pro�le
histograms HISX and HISY .

(e) If VX > TX or VY > TY ; where TX and TY are two width thresholds, split
at the mid-point of the wider of VX and VY and generate two child nodes
Otherwise, make the current node a leaf node.

Figure 4.1: The X-Y Cut segmentation algorithm.

4.1.2 The Docstrum Page Segmentation Algorithm

Docstrum [15] is a bottom-up page segmentation algorithm that can work
on document page images with non-Manhattan layout and arbitrary skew
angles. This algorithm tends to fragment non-text regions (�gures, tables
and halftone images) and text zones with irregular font sizes and spacings.

4.1. PAGE SEGMENTATION ALGORITHM 19

Moreover, it does not perform well when document images contain sparse
characters.

The basic steps of the Docstrum segmentation algorithm are shown in
Figure 4.2. In our implementation, we did not estimate orientation since all

1. Obtain connected components (Cis) using a space-e�cient two-pass algorithm [8].

2. Remove small and large noise or non-text connected components using low and high
thresholds l and h:

3. Separate the Cis into two groups, one with dominant characters and the other with
characters in titles and section headings. A parameter fd controls the clustering.

4. Find the K nearest neighbors, NNK(i), of each Ci:

5. Compute the distance and angle of each Ci and its K nearest neighbors: (�ij; �
i
j);

such that j 2 NNK(i):

6. Compute a within-line nearest-neighbor distance histogram from the following set
W� : W� = f�ij jj 2 NNK(i); and � �h � �ij � �hg; where �h is the horizontal
angle tolerance threshold. Estimate the within-line inter-character spacing cs as
the location of the peak in the histogram.

7. Compute a between-line nearest-neighbor distance histogram from the set B� : B� =
f�ijjj 2 NNK(i); and 90� � �v � �ij � 90� + �vg; where �v is the vertical angle
tolerance threshold. Estimate the inter-line spacing ls as the location of the peak
in the histogram.

8. Perform transitive closure on within-line nearest neighbor pairings to obtain
textlines Lis using within-line nearest neighbor distance threshold Tcs = ft � cs.

9. Perform transitive closure on the Lis to obtain structural blocks or zones Zis us-
ing parallel distance threshold Tpa = fpa � cs and perpendicular distance threshold
Tpe = fpe � ls. The parallel and perpendicular distances are computed as \end{end"
distance, not \centroid{centroid" distance.

Figure 4.2: The Docstrum segmentation algorithm.

pages in the dataset were deskewed. Furthermore, we used a resolution of 1
pixel/bin for constructing the within-line and between-line histograms, and
did not perform any smoothing of these histograms.

20 CHAPTER 4. ALGORITHM DESCRIPTION

4.1.3 The Voronoi-Diagram-Based Page Segmentation
Algorithm

Kise's segmentation algorithm [9] is also a bottom-up algorithm based on the
Voronoi diagram. This method can work on document page images that have
non-Manhattan layout, arbitrary skew angles, or non-linear textlines. A set
of connected line segments are used to bound text zones. Since we evaluate
all algorithms on document page images with Manhattan layouts, this algo-
rithm has been modi�ed to generate rectangular zones. This algorithm has
limitations similar to those of the Docstrum algorithm. The algorithm steps
are shown in Figure 4.3.

1. Label connected components. Sample points on their borders. The parameter
sr controls the number of sample points used.

2. Remove noise connected components using maximum noise zone size threshold
nm; maximum width threshold Cw; maximum height threshold Ch; and maxi-
mum aspect ratio threshold Cr for all connected components.

3. The Voronoi diagram for each connected component is generated using the
sample points on its border.

4. Delete superuous Voronoi edges to generate text zone boundaries according to
a spacing and area-ratio criteria [9].

5. Remove noise zones using minimum area threshold Az for all zones, and using
minimum area threshold Al; and maximum aspect ratio threshold Br for the
zones that are vertical and elongated.

Figure 4.3: The Voronoi-based segmentation algorithm.

4.2 The Textline-based Error Metric and Bench-

mark (Error Counter) Algorithm

In the following sections, we de�ne page segmentation, a set of textline-based
error measurements and a performance metric that we used in our previous
evaluation of page segmentation algorithms [12, 11]. These de�nitions are
based on set theory and mathematical morphology [8]. We then de�ne a
general metric that users can customize for their individual tasks.

4.2. THE TEXTLINE-BASED ERRORMETRIC ANDBENCHMARK (ERRORCOUNTER) ALGOR

4.2.1 Page Segmentation De�nition

Let I be a document image, and let G be the groundtruth of I. Let Z(G) =
fZG

q ; q = 1; 2; : : : ;#Z(G)g be a set of groundtruth zones of document im-
age I where # denotes the cardinality of a set. Let L(ZG

q) = flGqj; j =
1; 2; : : : ;#L(ZG

q)g be the set of groundtruth textlines in groundtruth zone
ZG
q . Let the set of all groundtruth textlines in document image I be L =

[
#Z(G)
q=1 L(ZG

q). Let A be a given segmentation algorithm, and SegA(�; �)
be the segmentation function corresponding to algorithm A. Let R be
the segmentation result of algorithm A such that R = SegA(I;pA) where
Z(R) = fZR

k jk = 1; 2; : : : ;#Z(R)g.
Let D(�) � Z2 be the domain of its argument. The groundtruth zones

and textlines have the following properties: 1) D(ZG
q) \ D(Z

G
q0) = � for

ZG
q ; Z

G
q0 2 Z(G) and q 6= q0, and 2) D(lGi) \ D(l

G
i0) = � for lGi ; l

G
i0 2 L and

i 6= i0.

4.2.2 Error Measurements and Metric De�nitions

In this section, we de�ne four error measurements and a metric. Let TX ; TY 2
Z+[f0g be two length thresholds (in pixels) that determine if the overlap is
signi�cant or not. Each of these thresholds is de�ned in terms of an absolute
threshold and a relative threshold. The absolute threshold is in pixels and
the relative threshold is a percentage. TX and TY are de�ned as follows:

TX = minfHPIX; (100 �HTOL) � h=100g (4.1)

TY = minfV PIX; (100 � V TOL) � v=100g (4.2)

where HPIX and V PIX are the the two thresholds in pixels, HTOL and
V TOL are the two thresholds in percentages, and h; v are the minimumwidth
and height (in pixels) of two regions that are tested for signi�cant overlap.
Users must specify the HTOL; V TOL;HPIX and V PIX parameter values
in the benchmark algorithm parameter �le (bpr). Figure 4.4(b) shows a
sample benchmark algorithm parameter �le.

Let E(TX; TY) = fe 2 Z2j � TX � X(e) � TX;�TY � Y (e) � TY g
be a region of a rectangle centered at (0; 0) with a width of 2TX + 1 pix-
els, and a height of 2TY + 1 pixels where X(�) and Y (�) denote the X and
Y coordinates of the argument, respectively. We now de�ne two morpho-
logical operations: dilation and erosion [8]. Let A;B � Z2. Morpholog-
ical dilation of A by B is denoted by A � B and is de�ned as A � B =

22 CHAPTER 4. ALGORITHM DESCRIPTION

The Textline-Based Benchmark
Algorithm Parameters

HTOL = 90
VTOL = 80
HPIX = 11
VPIX = 8

weight �le

wSpl = 0
wMrg = 0
wMis = 0
wFA = 0
wSplLine = 1
wMrgLine = 1
wMisLine = 1
wFAZone = 0

(a) (b)

Figure 4.4: Samples of a benchmark algorithm parameter �le (bpr) (a) and
a weight �le (wgt) (b).

fc 2 Z2jc = a+ b for some a 2 A; b 2 Bg :Morphological erosion of A by B
is denoted byA	B and is de�ned asA	B = fc 2 Z2jc+ b 2 A for every b 2 Bg :

We now de�ne three types of textline based error measurements:
1) Groundtruth textlines that are missed:

CL =
n
lG 2 LjD(lG)	 E(TX; TY) � ([ZR2Z(R)D(Z

R))c
o
; (4.3)

2) Groundtruth textlines whose bounding boxes are split:

SL =
n
lG 2 Lj(D(lG)	 E(TX; TY)) \D(Z

R) 6= �;

(D(lG)	 E(TX; TY)) \ (D(Z
R))c 6= �;

for some ZR 2 Z(R)
o
; (4.4)

3) Groundtruth textlines that are horizontally merged:

ML =
n
lGqj 2 Lj9l

G
q0j0 2 L; Z

R 2 Z(R); q 6= q0 ;

ZG
q ; Z

G
q0 2 Z(G)such that

(D(lGqj)	 E(TX; TY)) \D(Z
R) 6= �;

(D(lGq0j0)	 E(TX; TY)) \D(Z
R) 6= �;

((D(lGqj)	 E(0; TY))� E(1; 0)) \D(ZG
q0) 6= �;

((D(lGq0j0)	 E(0; TY))� E(1; 0)) \D(ZG
q) 6= �

o
: (4.5)

4) Noise zones that are falsely detected (false alarm):

FL =
n
ZR 2 Z(R)jD(ZR) � ([lG2L(D(l

G)	 E(Tx; TY)))
c
o

(4.6)

4.2. THE TEXTLINE-BASED ERRORMETRIC ANDBENCHMARK (ERRORCOUNTER) ALGOR

Let the number of groundtruth error textlines be #fCL [SL [MLg (mis-
detected, split, or horizontally merged), and let the total number of groundtruth
textlines be #L. We de�ne the performance metric �(I;G;R) as textline ac-
curacy:

�(I;G;R) =
#L �#fCL [SL [MLg

#L
:

In the PSET package, we also de�ne some other error measurements. Ta-
ble 4.1 shows the error measurements, the metric de�ned in the PSET pack-
age, and the corresponding symbols used in the above discussion.

Table 4.1: Summary of error measurements and the corresponding symbols
de�ned in this section.

Error Measure De�ned Equivalent Term Description
in the PSET package in this Section
nSpl none The number of split errors.
nMrg none The number of horizontal merge errors.
nFA #FL The number of false alarm errors.
nSplL #SL The number of split textlines.
nMrgL #ML The number of horizontally merged textlines.
nMisL #CL The number of mis-detected textlines.
nErrL #fCL [SL [MLg The number of error textlines (textlines that are

either split, horizontally merged or mis-detected).
nGtl #L The number of groundtruth textlines.

In general, the performance metric can be any function of the error mea-
sures shown in Table 4.1. In the PSET package, a performance metric can be
de�ned as a weighted sum of these error measures in function BenchScoring.
Let wSpl be the weight of the error measurement nSpl: The weights of other
error measurements are de�ned similarly. A general performance metric is
de�ned as follows:

N = wSpl � nSpl + wMrg � nMrg + wFA � nFA+ wSplL � nSplL

+wMrgL � nMrgL + wMisL � nMisL;

D = wSpl + wMrg + wFA+ wSplL + wMrgL + wMisL;

��(I;G;R) =
N

D
: (4.7)

24 CHAPTER 4. ALGORITHM DESCRIPTION

4.2.3 Benchmark (Error Counter) Algorithm

Based on this performance metric, the textline-based benchmarking algo-
rithm works as shown in Figure 4.5. Figure 4.6 gives a set of possible errors

1) For each groundtruth textline lG 2 L, if there exists a segmentation zone ZR 2
Z(R) such that Equation 4.4 is satis�ed, save the index of ZR and SPLIT error type
and set split ag to ON in the textline data structure of lG, also increment number
of splits error counter by 1.
2) For each possible pair of groundtruth textline lqj and lq

0j0 2 L, q 6= q0, if there
exists a segmentation zone ZR 2 Z(R) such that Equation 4.5 is satis�ed, save the
index of ZR and MERGE error type and set merge ag to ON in the textline data
structures of lqj and lq

0j0 , also increment number of merges error counter by 1.
3) For each groundtruth textline lG 2 L, if in its data structure, no segmentation
zone ZR 2 Z(R) index has been saved, i.e. Equation 4.3 is satis�ed, set miss ag to
ON in the textline data structure of lG, also increment number of mis-detection error
counter by 1.
4) For each groundtruth textline lG 2 L, if at least one error ag is ON (merge, split
and miss), increment error textline counter by 1. If split ag is ON, increment split
textline counter by 1, if merge ag is ON, increment merge textline counter by 1, if
miss ag is ON, increment miss textline counter by 1.
5) Save all error counter values into an error measure data structure.

Figure 4.5: The Textline-Based benchmarking algorithm.

as well as an experimental example.

4.3 The Training Algorithm

Direct search methods are typically used to solve the optimization problem
described in Section 4.1. We choose the simplex search method proposed by
Nelder and Mead [14] to minimize our objective function.

We give the notation used to describe the simplex method: Let q0 and
�i; i = 1; : : : ; n be a starting point and a set of scales, let ei; i = 1; : : : ; n be
n orthogonal unit vectors in n-dimensional parameter space, let p0; : : : ;pn
be (n + 1) ordered points in n-dimensional parameter space such that their
corresponding function values satisfy f0 � f1 �; : : : ;� fn, let �p =

Pn�1
i=0 pi=n

be the centroid of the n best (smallest) points, let [pipj] be the n-dimensional
Euclidean distance from pi to pj, let �, �, and � be the reection, con-
traction, expansion and shrinkage coe�cient, respectively, and let T be the

4.3. THE TRAINING ALGORITHM 25

threshold for the stopping criterion. We use the standard choice for the coef-
�cients: � = 1, � = 0:5, = 2, � = 0:5. We set T to 10�6. Figure 4.8 shows
the various simplex operations.

For a segmentation algorithm with n parameters, the Nelder-Mead algo-
rithm works as shown in Figure 4.7.

26 CHAPTER 4. ALGORITHM DESCRIPTION

Horizontally
Merged

Horizontally
Split

Vertically
Split on

Bounding
Box

Vertically
Merged

False Alarm

Vertically
Split

Missed
Detection

(a) (b)

(c) (d)

Figure 4.6: (a) This �gure shows a set of possible textline errors. Solid-
line rectangles denote groundtruth zones, dashed-line rectangles denote OCR
segmentation zones, dark bars within groundtruth zones denote groundtruth
textlines, and dark bars outside solid lines are noise blocks. (b) A docu-
ment page image from the University of Washington III dataset with the
groundtruth zones overlaid. (c) OCR segmentation result on the image in
(b). (d) Segmentation error textlines. Notice that there are two horizontally
merged zones just below the caption and two horizontally merged zones in
the middle of the text body. In OCR output, horizontally split zones cause
reading order errors whereas vertically split zones do not cause such errors.

4.3. THE TRAINING ALGORITHM 27

1 Given q0 and the �i, form the initial simplex as
qi = q0 + �iei; i = 1; : : : ; n:,

2 Relabel the n+ 1 vertices as p0; : : : ;pn with
f(p0) � f(p1) � � � � f(pn),

3 Get a reection point pr of pn by pr = (1 + �)�p� �pn
where � = [pr�p]=[pn�p]:

4.1 If f(pr) � f(p0), replace pn by pr and f(pn) by
f(pr), get an expansion point pe of pn by
pe = (1 �)�p + pn where = [pe�p]=[pn�p] > 1:
If f(pe) < f(pn), replace pn by pe and f(pn) by f(pe).
Go to step 5.

4.2 Else if f(pr) � f(pn�1), if f(pr) < f(pn) replace pn by pr and f(pn) by f(pr),
get a contraction point pc
of pn by pc = (1 � �)�p+ �pn, � = [pc�p]=[pn�p] < 1:
If f(pc) � f(pn), shrink the simplex around the best
vertex p0 by pi = (pi + p0)�, i 6= 0, else replace pn
by pc and f(pn) by f(pc), go to step 5.

4.3 Else, replace pn by pr and f(pn) by f(pr) .

5 If
qPn

i=0(f(pi)� f(�p))2=n < T , stop else go to step 2.

Figure 4.7: The Simplex optimization algorithm.

28 CHAPTER 4. ALGORITHM DESCRIPTION

�
�
�
�

�
�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

Pr

P

P

P1
P2

0

f()P2

f()P1

f()P0

f()Pr

f()P

p
2

p1

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

��
��
��
��

�
�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��
��

��
��
��

��
��
��

P

P

P1
P2

0

f()P2

f()P1

f()P0

f()P

p
2

p1
Pe

f()Pe

(a) (b)

�
�
�
�

�
�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

P

P1
P2

0

f()P2

f()P1

f()P0

f()P

p
2

p1

P

Pc

f()Pc

�
�
�
�

�
�
�
�

��
��
��

��
��
��

�
�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��

��
��
��

P

P1
P2

0

f()P1

f()P0

f()P

p
2

p1

f()P2

f()P’
2

f()P’
1

P’
2

P1
’

(c) (d)

Figure 4.8: This �gure shows four simplex operations in a two-dimensional
parameter space. The solid lines denote the simplex before any operation
and the dashed lines denote the simplex after the operation. p2 and p0 are
the vertices for which the objective funtion f(�) assumes the biggest and
smallest values respectively, and �p =

P1
i=0 pi=2 is the centroid of the two

best vertices. The operations are (a) a reection pr of p2 with respect to
the centroid point �p, (b) an expansion pe of p2 with respect to the centroid
point �p, (c) a contraction pc of p2 with respect to the centroid point �p, and
(d) a shrinkage of all pi; i 6= 0 toward p0. A local minimum can be obtained
after an appropriate sequence of such operations.

Chapter 5

Architecture, File Formats, and
Evaluation Methodology

In this section, we �rst describe the software architecture of the PSET pack-
age and the formats of the �les used to communicate with the package. Next
we show how this software package can be used to implement the �ve steps
of the page segmentation evaluation methodology described in Chapter 3.
Generic �le format descriptions as well as speci�c examples are provided, for
clearer understanding. This description of the architecture and �le formats
will allow users to i) understand the working of the PSET package, ii) repli-
cate our results, iii) modify the parameter �les for datasets, metrics, etc. and
conduct their own evaluation experiments, iv) understand, maintain and im-
prove the software, and v) evaluate new algorithms and compare the results
with existing algorithms. The PSET package has been used to evaluate �ve
page segmentation algorithms [12, 11].

5.1 Architecture and File Formats

The PSET package can be used to i) automatically train a given page seg-
mentation algorithm, i.e., automatically select optimal algorithm parameters
on a given training dataset, and ii) evaluate the page segmentation algorithm
with the optimal parameters found in i) on a given test dataset. Figure 5.1
shows the overall architecture of the PSET package and illustrates these two
functionalities.

The overall architecture shows all the input �les that are needed to con-

29

30CHAPTER 5. ARCHITECTURE, FILE FORMATS, ANDEVALUATIONMETHODOLOG

TrainSeg

Train Protocol
File

(trp)

Training Dataset

(lst)
Filename List

Groundtruth
(DAF)

(trr)

Train Report

File

Document
Images
(TIF)

Segmentation
Algorithm

Parameter File
(spr)

Optimization
Algorithm

Parameter File
(opr)

TestSeg

Test Dataset
Filename List

(lst)

Test Protocol
File
(trp)

Groundtruth
(DAF)

Document
Images
(TIF)

Optimal
Segmentation

Algorithm
Parameter File

(spr)

Test Report
File

(ter)

Parameter File

Benchmark
Algorithm

(bpr)

Weight
File

(wgt)

Segmentation
Algorithm
Shell File

(sh)

Figure 5.1: Overall PSET architecture. The left half of the architecture
represents the training phase; the right half represents the testing phase.
Note that in the testing phase, the optimal page segmentation parameter
found in the training phase is used. The training and testing phases use the
same performance metric related input �les (benchmark algorithm parameter
�le (bpr) and weight �le (wgt)) and the same segmentation algorithm shell
�le (sh).

duct the training and testing experiments for a given page segmentation
algorithm, and all the output �les generated by the training and testing pro-
cedures. Table 5.1 lists all the �les used, their purposes, and their �le name
extensions.

Input �les include various initial algorithm parameter �les (an optimiza-
tion algorithm parameter �le (opr), a page segmentation algorithm parameter
�le (spr), and a benchmark algorithm parameter �le (bpr)), dataset �les (lst),
a shell �le (sh), and experimental protocol �les (training protocol �le (trp)
and test protocol �le (tep)). Users need to provide these �les to the PSET
package to conduct training or testing experiments. The output �les of the
training phase include a training report �le (trr) and an optimal segmentation
algorithm parameter �le (spr). The training report �le (trr) records interme-
diate as well as �nal training results of the training experiment. The optimal
segmentation algorithm parameter �le (spr) records the optimal segmenta-
tion algorithm parameter values found in the training phase. The output of
the testing phase is a testing report �le (ter), which records a set of error
measures, timing and performance scores for each image in the test dataset,

5.2. IMPLEMENTING THE EVALUATION METHODOLOGY 31

Table 5.1: Summary of the �le formats in the PSET package.

File Type Extension Description
Dataset List File lst It saves the root name of each image in a dataset.
Train Protocol File trp It saves the protocol parameters of the training experiment.
Test Protocol File tep It saves the protocol parameters of the testing experiment.
Segmentation Algorithm spr It saves the parameters of a page segmentation algorithm
Parameter File that are to be trained.
Benchmarking Algorithm bpr It saves all parameters of a benchmarking algorithm.
Parameter File
Optimization Algorithm opr It saves all parameters of an optimization algorithm.
Parameter File
Groundtruth File DAF It saves document images and their groundtruth information.
Segmentation Result File dafs It saves document images and their segmentation results.
Train Report File trr It saves the training result of a segmentation algorithm.
Test Report File ter It saves the test result of a segmentation algorithm.
Weight File wgt It saves a set of weights for a set of error measures.
Segmentation Algorithm sh It saves a shell command for running segmentation
Shell File algorithm executable. It is a Bourn shell program.

and a �nal average performance score over all images in the test dataset.
Figure 5.2 shows various input �le formats. Figure 5.3 shows the training
report �le format and Figure 5.4 shows the test report �le format.

The parameter values in the parameter �les are �rst read into the cor-
responding data structures inside the TrainSeg and the TestSeg modules as
shown in Figure 5.5. The Train module shown in Figure 5.5(a) is shown at
a �ner level of detail in Figure 5.6, where the interaction of the optimiza-
tion algorithm and the objective function computation module is illustrated.
A detailed view of the Objective Function Genscore showing the interaction
between the segmentation algorithm module and the performance metric
computation module is shown in Figure 5.7(a). Finally, a blown-up view of
the Test module shown in Figure 5.5(b) is shown in Figure 5.7 (b).

5.2 Implementing the Evaluation

Methodology

In this section we show how a user can implement each step of the �ve-
step evaluation methodology described in Chapter 3. Each variable in the
methodology is mapped to a speci�c parameter �le and each step is mapped
to a speci�c group of modules in the package.

1. The training dataset T is speci�ed in the image root name list �le
(lst). The �le name and location of the list �le and the location of the

32CHAPTER 5. ARCHITECTURE, FILE FORMATS, ANDEVALUATIONMETHODOLOG

[comments]

DATASET = <dataset �le name>
GROUNDTRUTH DIR = <groundtruth directory name>
IMG DIR = <image directory name>
GT SUFFIX = <groundtruth �le su�x>
SG SUFFIX = <segmentation result �le su�x>
IMG SUFFIX = <image �le su�x>
TRAIN RESULT DIR = <training result �le location>
OPT ALG = <optimization algorithm name>
BEN ALG = <benchmark algorithm name>
SEG ALG = <page segmentation algorithm name>

[comments]

DATASET = <testing dataset �le name>
GROUNDTRUTH DIR = <groundtruth directory name>
IMG DIR = <image directory name>
GT SUFFIX = <groundtruth �le su�x>
SG SUFFIX = <segmentation result �le su�x>
IMG SUFFIX = <image �le su�x>
TEST RESULT DIR = <testing result �le location>
BEN ALG = <benchmark algorithm name>
SEG ALG = <page segmentation algorithm name>

[comments]
<parameter 1 name> = <value>
<parameter 2 name> = <value>

. = .

. = .

. = .
<parameter N name> = <value>

(a) (b) (c)
File Attribute Name Description
DATASET The �lename of a list �le that saves the root name of

each image in a dataset.
GROUNDTRUTH DIR The location of the groundtruth �les.
IMG DIR The location of the image �les.
GT SUFFIX The su�x of a groundtruth �lename, e.g. the su�x of

groundtruth �le \A001.DAF" is \.DAF".
SG SUFFIX The su�x of a segmentation result �lename, e.g. the su�x of

segmentation result �le \A001.dafs" is \.dafs".
IMG SUFFIX The su�x of an image �lename, e.g. the su�x of image �le

\A001BIN.TIF" is \BIN.TIF".
TRAIN RESULT DIR The location of the training result �les generated by a training experiment.
TEST RESULT DIR The location of the testing result �les generated by a test experiment.
OPT ALG The name of the optimization algorithm that is to be used.
BEN ALG The name of the benchmarking algorithm that is to be used.
SEG ALG The name of the page segmentation algorithm that is to be used.

(d)

Figure 5.2: Input �le formats. The training protocol �le format is shown in
(a), the test protocol �le format is shown in (b), and the algorithm parameter
�le format is shown in (c). The description of the attributes in (a) and (b)
is given in (d).

image and groundtruth �les are speci�ed in the training protocol �le
(trp). This information is later read into the Train Protocol Parameter
Data Structure as shown in Figure 5.5(a). Similarly, a test dataset S
is speci�ed in another image root name list �le (lst). The �le name
and location of the list �le and the location of image and groundtruth
�les are speci�ed in the test protocol �le (tep). This information is
later read into the test protocol parameter data structure as shown
in Figure 5.5(b). Other experimental protocol parameters such as �le
su�x and algorithms used are also speci�ed in the training protocol �le
(trp) and test protocol �le (tep). Figures 5.2(a) and (b) show generic
formats for these two �les and Figure 5.8 shows samples of these two
�les.

5.2. IMPLEMENTING THE EVALUATION METHODOLOGY 33

[experimental environments]
#
Feval p[1] p[2] . . . p[n] score timing plow[1] plow[2] . . . plow[n] Flow
1 <data> <data> . . . <data> <data> <data> <data> <data> . . . <data> <data>
2 <data> <data> . . . <data> <data> <data> <data> <data> . . . <data> <data>
.
.
.
M <data> <data> . . . <data> <data> <data> <data> <data> . . . <data> <data>

Optimal Parameter Vector = <param 1> <param 2> . . . <param N>
Optimal Performance Value = <data>

End of the training.

(a)

Item Name Description
Feval Number of objective function evaluations.
p[1], p[2], . . . , p[n] Current objective function parameter vector value;

here the objective function parameter vector is the
page segmentation parameter vector being trained.
n is the dimensionality of the parameter vector.

score Current performance measure, in this case,
textline error rate.

timing The time it takes to obtain the current score.
plow[1], plow[2], . . . , plow[n] The objective function parameter vector value that

gives the best score so far.
Flow The best score so far | in this case, the minimum

textline error rate so far.

(b)

Figure 5.3: The training report �le format. The format is shown in (a) and
the description of each column entry in (a) is shown in (b).

34CHAPTER 5. ARCHITECTURE, FILE FORMATS, ANDEVALUATIONMETHODOLOG

<experimental environments>
#
#Img nSpl nMrg nFA nSplL nMrgL nMisL nErrL nGtL score timing
 <data> <data> <data> <data> <data> <data> <data> <data> <data> <data>
 <data> <data> <data> <data> <data> <data> <data> <data> <data> <data>
.
.
.
 <data> <data> <data> <data> <data> <data> <data> <data> <data> <data>

The average textline accuracy = <data>

End of testing.

(a)

Column Entry Description
Img The root name of the current image �le.
nSpl The number of split errors.
nMrg The number of horizontal merge errors.
nFA The number of false alarm errors.
nSplL The number of split textlines.
nMrgL The number of horizontally merged textlines.
nMisL The number of mis-detected textlines.
nErrL The number of error textlines (textlines that are

either split, horizontally merged or mis-detected).
nGtl The number of groundtruth textlines.
score The performance measure (textline error rate) on current image.
timing The time taken to obtain the score.

(b)

Figure 5.4: The test report �le format. The format is shown in (a) and the
description of each column entry in (a) is shown in (b).

5.2. IMPLEMENTING THE EVALUATION METHODOLOGY 35

Groundtruth

Document
Images

Dataset
Filename List

(lst)

Benchmark
Algorithm

Parameter File
(bpr)

Segmentation
Algorithm

Parameter File
(spr)

(sh)

Segmentation
Algorithm
Shell File Data Structure

Parameter
Benchmark Alg.

Data Structure
Alg. Parameter
Segmentation

(TIF)

(DAF)

ReadBenchParam ReadSegParam

Weight
File

(wgt)

Optimization
Algorithm

Parameter File
(opr)

Algorithm
Optimization

Data Structure

ReadOptParam

Train Protocol
File
(trp)

ReadTrainProtocol

Train Protocol
Data Structure

Train

(trr)
File

Train Report

 Test

Test Protocol
Data Structure

Groundtruth

Document
Images

Test Report

Dataset
Filename List

(lst)
File
(tep)

Test Protocol Benchmark
Algorithm

Parameter File
(bpr)

Weight

(wgt)
File

(sh)

Segmentation
Algorithm
Shell File Data Structure

Parameter
Benchmark Alg.

File
(ter)

(TIF)

(DAF)

ReadBenchParam ReadSegParamReadTestProtocol

Optimal
Segmentation

Algorithm
Parameter File

(spr)

Data Structure
Alg. Parameter
Segmentation

Optimal

(a) (b)

Figure 5.5: Parameter reading stage of the training phase (a) and the testing
phase (b). At this level, various parameter �les are read into their corre-
sponding data structures which are fed into the Train and Test modules.

2. The performance metric �(I;G;R) is computed in module B, shown in
Figures 5.7(a) and (b). (I;G) is an (image, groundtruth) pair, which
is represented by two single pages in the architecture, and R is the seg-
mentation result �le represented by Segmentation Result (dafs). The
error counter algorithm for generating a set of error measures is imple-
mented in the Bench module. In the BenchScoring module, a weighted
error measure 1 � �(I;G;R) is computed. The formal de�nitions of
error measures and performance metrics are given in the Appendix.
To compute a performance metric, two input �les, a benchmark Al-
gorithm Parameter File (bpr) and a weight �le (wgt), are required.
Examples of these two �les are shown in Figure 4.4. Users can sub-
stitute their own performance metrics and error counters in place of
these two modules. However, this also requires that the users write a
new ReadBenchParam module and de�ne a new benchmark algorithm
parameter data structure as shown in Figure 5.5.

3. The objective function f(pA;T ; A; �) is represented by the module C
in Figure 5.7(a), where page segmentation algorithm A is represented
by module A, the training dataset T is speci�ed in the train proto-
col parameter data structure, the computation of performance metric
� is conducted in module B, and objective function parameter vec-
tor pA is represented by the segmentation algorithm parameter data

36CHAPTER 5. ARCHITECTURE, FILE FORMATS, ANDEVALUATIONMETHODOLOG

Test Protocol

Data Structure

Benchmark
Alg. Parameter
Data Structure

Segmentation
Algorithm
Shell File

(sh)

Weight File
(wgt)

(trr)
File

Train Report

Optimization
Algorithm

(spr)
Parameter File

Algorithm
Optimal Seg.Optimization

Data Structure
Alg. Parameter

Document
Images
(TIFF)

Groundtruth
(DAF)Objective

Function
Genscore

Segmentation
Alg. Parameter
Data Structure

Average Score

Figure 5.6: The Train module. In this module, the objective function is opti-
mized over a given training dataset. Two �les are generated by this module,
a train report �le (trr) and an optimal segmentation algorithm parameter
�le (spr).

structure in the architecture. The optimization procedure is shown in
Figure 5.6 in a simpli�ed representation. In addition, a benchmark
algorithm parameter �le (bpr), weight �le (wgt), shell �le (sh), list �le
(lst), training protocol �le (trp), optimization algorithm parameter �le
(opr) and segmentation algorithm parameter �le (spr) are required to
conduct objective function optimization. Samples of opr and spr are
shown in Figure 5.9. The generic �le format of these sample �les is
shown in Figure 5.2.

The optimal objective function parameter vector p̂A is stored in the
�le optimal segmentation algorithm parameter �le (spr) shown in Fig-
ure 5.6. Users can substitute their own objective function in place of
the architecture shown in Figure 5.7(a) and their own optimization
algorithm module in the place of the Optimization Algorithm module
shown in Figure 5.6. Again, they need to write new parameter reading
functions and de�ne corresponding data structures. This step gener-
ates two �les, a training report �le (trr) and an optimal segmentation
algorithm parameter �le (spr). Figure 5.10(a) shows a sample training
report �le.

4. After the optimal objective function parameter vector p̂A has been
found, the page segmentation algorithm is evaluated on a given test

5.2. IMPLEMENTING THE EVALUATION METHODOLOGY 37

Bench

Finished ?

Y

Seg Module

ReadWeight

Segmentation
Algorithm Benchmark

ParameterAlg.

BenchScoring

Error
Measurement
Data Structure

Data Structure
Score

Score
Average

Compute

Average Score

Weight

Data Structure

Weight File
(wgt)

Alg. Parameter
Segmentation

Data Structure
Shell File

(sh) Data Structure

SetUp

Experimental
parameters

Experiment
Environment

N

Select Next
Image and

Groundtruth
Pair

Groundtruth

Parameter

Images
Document

(TIF)

Train Protocol

Data Structure

(DAF)

(TIF)

Document
Image

(dafs)
Result

Segmentation

Groundtruth
(DAF) C

BA

Bench

Finished ?

Y

Seg Module

ReadWeight

Segmentation
Algorithm Benchmark

ParameterAlg.

BenchScoring

Error
Measurement
Data Structure

Data Structure
Score

Score
Average

Compute

Average Score

Weight

Data Structure

Weight File
(wgt)

Shell File
(sh) Data Structure

Φ =
1 - Average Score

Test Report
File
(ter)

Data Structure
Alg. Parameter
Segmentation

Optimal

SetUp

Experimental
parameters

Experiment
Environment

N

Select Next
Image and

Groundtruth
Pair

Groundtruth

Images
Document

(TIF)

(DAF)

Test Protocol
Parameter

Data Structure

Document
Image
(TIF)

Groundtruth
(DAF)

Result
Segmentation

(dafs)

C

BA

(a) (b)

Figure 5.7: Software architectures of the objective function module and the
test module. Module A represents the page segmentation algorithm module,
module B represents the page segmentation error counter and scoring module,
and module C represents the objective function module. The test module
in (b) has sub-modules similar to those in (a). It also has a module for
computing a �nal testing performance score (average textline accuracy).

dataset S. Figure 5.7(b) shows the architecture of the test procedure.
The test dataset S is speci�ed in the test protocol parameter data struc-
ture. Performance metric � is computed in module B. Note that module
C here has the same architecture as module C in Figure 5.7(a). The
computation of the �nal performance value � is represented in module
�:Users can de�ne their own � function by changing the Bench, Bench-
Scoring, Compute Average Score, and � modules in Figure 5.7(b). This
step generates a test report �le (ter) which records a performance score
for each image in the test dataset as well as a �nal average performance
score over all images in the test dataset. Figure 5.10(b) shows a sample

38CHAPTER 5. ARCHITECTURE, FILE FORMATS, ANDEVALUATIONMETHODOLOG

Training experiment protocal
By: Song Mao
Feb. 21, 2000
LAMP, UMCP

DATASET = train.lst
GROUNDTRUTH DIR = /fs/mirak2/LAMP/UWIII/ENGLISH/LINEWORD/DAFS/
IMG DIR = /fs/mirak2/LAMP/UWIII/ENGLISH/LINEWORD/IMAGEBIN/
GT SUFFIX = .DAF
SG SUFFIX = .dafs
IMG SUFFIX = BIN.TIF
TRAIN RESULT DIR = ./
OPT ALG = simplex
BEN ALG = textline based
SEG ALG = docstrum

Test experiment protocal
By: Song Mao
Feb. 21, 2000
LAMP, UMCP

DATASET = test.lst
GROUNDTRUTH DIR = /fs/mirak2/LAMP/UWIII/ENGLISH/LINEWORD/DAFS/
IMG DIR = /fs/mirak2/LAMP/UWIII/ENGLISH/LINEWORD/IMAGEBIN/
GT SUFFIX = .DAF
SG SUFFIX = .dafs
IMG SUFFIX = BIN.TIF
TEST RESULT DIR = ./
BEN ALG = textline based
SEG ALG = xycut

(a) (b)

Figure 5.8: Sample protocol �les. From both the train protocol �le (a)
and the test protocol �le (b), we can see that the list �les of the training
dataset and test dataset are train.lst and test.lst respectively, the optimization
algorithm used is the Simplex algorithm, the benchmarking algorithm used is
the Textline-based algorithm, the page segmentation algorithm trained is the
Docstrum algorithm, and the page segmentation algorithm tested is the X-Y
cut algorithm. We can also �nd the locations of the groundtruth �les, image
�les and training and test result �les. Moreover, the su�xes for various �les
are given for �le name manipulation in the PSET API.

test report �le.

5. The statistical analysis of the test experimental results can be con-
ducted using a standard statistics software package such as S-PLUS [3]
or SPSS [6].

5.3 Algorithm Calling Mode in the Segmen-

tation Algorithm Module

An important feature of the PSET package is that there are two page seg-
mentation algorithm calling modes: function call and shell call. If the source
code of a segmentation algorithm is available as a function, the user can link
the function into the training and testing modules. In many cases, however,
source code of a segmentation algorithm is not available, but executable code
is. In such cases the shell calling mode can be used to run the segmenta-
tion algorithm from within the training or testing module. Furthermore, if
a segmentation algorithm source code is not well debugged, e.g., if it leaks
memory after each function call, the leaked memory can accumulate after

5.3. ALGORITHMCALLINGMODE INTHE SEGMENTATIONALGORITHMMODULE39

The Simplex Optimization
Algorithm Parameters
NDIM = 4
CRIFLG = nelder-mead
NMAX = 500
FTOL = 0.000001
ALPHA = 1.0
BETA = 0.5
GAMMA = 2.0
SIGMA = 0.5
P = 100,80,100,50
SCALE = 20,20,20,20

The X-Y Cut Page Segmentation
Algorithm Parameters
ALG MODE = func call
TNX = 100
TNY = 80
TCX = 100
TCY = 50

(a) (b)

Figure 5.9: Samples of an optimization algorithm parameter �le (opr) and a
segmentation algorithm parameter �le (spr). A sample �le for the Simplex
optimization algorithm is shown in (a) and a sample �le for the X-Y cut seg-
mentation algorithm is shown in (b). Their detailed parameter descriptions
can be found in [10].

many function calls and can �nally cause algorithm crash at some point.
The shell call mode is a good solution to this problem since in this case the
executable code is used, and after each call all leaked memory is freed. The
disadvantage of the shell call mode is that it can be slower than the function
call mode. Figure 5.12 shows the architecture of the software implementation
of these two calling modes. A shell �le is required in the page segmentation
algorithm shell call mode. A sample shell �le is shown in Figure 5.11.

40CHAPTER 5. ARCHITECTURE, FILE FORMATS, ANDEVALUATIONMETHODOLOG

#
File: TrainDocstrum 1,4,2.1,6.trr
Purpose: training result of the Docstrum algorithm using Simplex algorithm.
User: maosong
Date: 09/18/2000/ 19:12:25
Operating system: SunOS, 5.6, Generic 105181-19
Machine name: hanzi.cfar.umd.edu
Working directory: /hanzi/maosong/software/SegEvalToolKit/pset-1.0/experiments/TrainDocstrum
Machine type: sun4u
Command line: TrainSeg -p train protocol.trp -b bench.bpr -o simplex.opr -s docstrum.spr
-w weight.wgt -t TrainDocstrum 1,4,2.1,6.trr -r docstrum optimal 1,4,2.1,6
#

Feval p[1] p[2] p[3] p[4] score timing plow[1] plow[2]plow[3]plow[4]Flow
1 1.000 4.000 2.100 6.000 39.874 206.6 1.000 4.000 2.100 6.000 39.874
2 2.000 4.000 2.100 6.000 39.698 155.0 2.000 4.000 2.100 6.000 39.698
3 1.000 5.000 2.100 6.000 43.337 206.3 2.000 4.000 2.100 6.000 39.698
4 1.000 4.000 3.100 6.000 44.073 207.5 2.000 4.000 2.100 6.000 39.698
5 1.000 4.000 2.100 7.000 39.874 204.2 2.000 4.000 2.100 6.000 39.698
6 1.250 4.250 2.100 6.250 39.761 172.2 2.000 4.000 2.100 6.000 39.698
7 1.500 4.500 1.100 6.500 34.718 160.4 2.000 4.000 2.100 6.000 39.698
8 1.750 4.750 0.100 6.750 30.138 158.4 2.000 4.000 2.100 6.000 39.698
9 1.438 4.188 1.600 6.438 35.710 162.4 1.750 4.750 0.100 6.750 30.138
10 1.875 3.375 1.100 6.875 25.513 155.1 1.750 4.750 0.100 6.750 30.138
11 2.312 2.562 0.600 7.312 10.513 153.2 1.750 4.750 0.100 6.750 30.138
12 1.766 3.828 1.225 6.766 31.076 156.2 2.312 2.562 0.600 7.312 10.513
13 2.531 3.656 0.350 7.531 27.372 153.2 2.312 2.562 0.600 7.312 10.513
.
.
.
160 2.533 1.975 0.647 7.547 5.336 153.4 2.535 1.978 0.645 7.550 5.336
161 2.533 1.977 0.646 7.548 5.336 153.2 2.533 1.975 0.647 7.547 5.336

Optimal Parameter Vector = 2.533 1.975 0.647 7.547
Optimal Performance Value = 5.336

End of the training.

#
File: TestXycut 78,32,35,54.ter
Purpose: testing result of the X-Y cut algorithm.
User: maosong
Date: 09/20/2000/ 10:58:33
Operating system: SunOS, 5.6, Generic 105181-19
Machine name: hangul.cfar.umd.edu
Working directory: /a/hanzi/hanzi/maosong/software/pset-1.0/experiments/TestXycut
Machine type: sun4u
Command line: TestSeg -p test protocol.tep -b bench.bpr -s xycut optimal.spr
-w weight.wgt -t TestXycut 78,32,35,54.ter
#

ImgnSpl nMrg nFA nSplL nMrgL nMisL nErrL nGtL score timing
A001 1 0 19 1 0 0 1 35 0.029 3.060
A002 2 0 6 2 0 1 3 5 0.600 2.030
A004 1 0 5 1 0 0 1 44 0.023 2.620
A005 1 46 8 1 52 0 53 62 0.855 2.290
A006 3 0 5 3 0 0 3 116 0.026 2.890
A007 4 0 11 4 0 0 4 127 0.031 3.050
A008 1 0 2 1 0 0 1 104 0.010 2.610
A009 1 0 2 1 0 0 1 47 0.021 2.140
A00A 1 0 2 1 0 0 1 45 0.022 2.170
A00B 2 0 4 2 0 0 2 183 0.011 3.130
A00C 11 0 4 11 0 0 11 155 0.071 2.770
A00D 0 0 4 0 0 1 1 35 0.029 2.000
.
.
.
V00N 2 0 1 2 0 0 2 95 0.021 2.520

The average textline accuracy = 0.829185

End of testing.

(a) (b)

Figure 5.10: Samples of a training report �le format (a) and a test report
�le format (b). The comment lines provide experimental environment in-
formation about the training and test experiments. They are automatically
generated by calling various GNU C functions. They are crucial for repli-
cating experimental results. In the data area, both intermediate information
and �nal results are recorded. This information can be used to analyze the
convergence properties of the training process and to study the statistical
signi�cance of the test experiment results. A detailed description of each
column entry can be found in Figure 5.3(b) and Figure 5.4(b).

#! /bin/sh

Docstrum -t $1 -p $2 -u $3 -d $4 $5 $6 $7

Figure 5.11: A sample shell �le.

5.3. ALGORITHMCALLINGMODE INTHE SEGMENTATIONALGORITHMMODULE41

Call Mode?
Shell CallFunction Call

Generate
Shell Command

Shell
Command

sh_c
Seg

ExcutableSeg Function

Document
Image

Segmentation
Alg. Parameter
Data Structure

Experimental
Parameters

Segmentation
Algorithm
Shell File

(sh)

Segmentation

(dafs)
Result

(TIF)

Figure 5.12: Page segmentation algorithm calling modes: function call and
shell call. The left half represents the function calling mode and the right half
represents the shell calling mode. The shell calling mode can be used only
when the algorithm executable is available; otherwise the function calling
mode can be used. Note that the executable is called by the function sh c.

42CHAPTER 5. ARCHITECTURE, FILE FORMATS, ANDEVALUATIONMETHODOLOG

Chapter 6

Tutorial

The PSET package provide C API functions for users to write their own
applications. In this chapter, several examples are given for aiding users
to understand how to perform some simple takes by correctly calling C API
functions and compiling their application code. These examples are designed
to cover the usage of the basic algorithm modules.

There are two algorithm calling mode, function call and shell call, i.e. we
can call an algorithm by its function or its executable. In this chapter, both
the function call as well as shell call implementations are shown for some of
examples.

6.1 Basic Integration Elements

The PSET package contains a training part and the a testing part that
include the following components:

� 1 C header �le (pset.h),

� 53 C function �les (Bench.c DocstrumFunction.c . . .),

� 1 make�leMake�le for making the PSET library.

� 14 sample parameter �les for conducting training and testing experi-
ments.

� 5 C main �les. They will generate �ve tools , i.e., TrainSeg, TestSeg,
Docstrum, Voronoi, Xycut.

43

44 CHAPTER 6. TUTORIAL

� 5 related documents.

In addition to these component, dafs library and ti� library are also included
in the PSET package. User can run the make�le under PSET directory to
compile them and generate corresponding libraries libdafs.a, libti�.a and
librutil.a.

6.2 Development Environments

The PSET package is developed on Ultra 1,2 and 5 Sun workstations running
the Solaris 2.6 operating system. The compiler used was GNU gcc 2.7.2.

6.3 Examples

In this section, a few sample code are provided. They cover the usage of the
basic algorithm modules in the PSET package. The corresponding make�le
is also given for showing users how to correctly compile the sample code.

6.3.1 Use a Page Segmentation Algorithm

In this section, we show how to use the X-Y cut page segmentation algorithm
in both function call and shell call modes to segment a given TIFF image and
obtain a segmentation result in DAFS format. Figure 6.1 shows the function
call implementation and Figure 6.2 shows the UNIX command line usage.
To use the X-Y cut algorithm function, users need to include the header �le
pset.h inside which all functions in the PSET package are described.

6.3.2 Use the Textline-Based Benchmarking Algorithm

In this section, we show how to use the textline-based benchmarking algo-
rithm in the function call mode. The inputs to the algorithm is its parameter
values, two DAFS �les, one of which is the groundtruth DAFS �le and the
other is the segmentation result DAFS �le. The output is a data structure
what saves a set of error measures. a segmentation result in DAFS format.
Figure 6.3 shows the function call implementation. It print out a set of error
measure values. To use the textline-based algorithm function, users need to

6.3. EXAMPLES 45

#include <stdlib.h>
#include "pset.h"

int main(int argc, char **argv)
f

XYCUT PARAM *para;

para = (XYCUT PARAM *) malloc (sizeof(XYCUT PARAM));
para->Tnx = 50;
para->Tny = 50;
para->Tcx = 50;
para->Tcy = 50;

/* argv[1] pointer to a string that stores input image �le name */
/* argv[2] pointer to a string that stores output segmentation
result �le name */

XycutFunction(argv[1], para, argv[2]);

return(0);
g

Figure 6.1: sample1.c: A sample code to use the X-Y cut page segmentation
algorithm by calling the algorithm function.

Xycut -a 50,50 -c 50,50 A001BIN.TIF A001.dafs

Figure 6.2: The UNIX command line usage of the X-Y cut page segmentation
algorithm. A001BIN.TIF is the input image and A001.dafs is the output
segmentation result �le in DAFS format.

include the header �le pset.h inside which all functions in the PSET package
are described.

Figure 6.4 shows the make�le for both samples shown in Figure 6.1 and
Figure 6.3.

46 CHAPTER 6. TUTORIAL

#include <stdio.h>
#include <stdlib.h>
#include "pset.h"

int main(int argc, char **argv)
f

BENCH PARAM *para;
ERR MEASURE *err measure;

para = (BENCH PARAM *) malloc (sizeof(BENCH PARAM));
err measure = (ERR MEASURE *) malloc (sizeof(ERR MEASURE));

para->htol = 90;
para->vtol = 80;
para->hpix = 11;
para->vpix = 8;

/* argv[1] pointer to a string that stores input image �le name */
/* argv[2] pointer to a string that stores groundtruth �le name */
/* argv[3] pointer to a string that stores segmentation result �le name */

Bench(argv[1], para, argv[2], argv[3], &err measure);

printf("nSpl = %dnn", err measure!nSpl);
printf("nMrg = %dnn", err measure!nMrg);
printf("nMis = %dnn", err measure!nMis);
printf("nFA = %dnn", err measure!nFA);
printf("nSplLine = %dnn", err measure!nSplLine);
printf("nMrgLine = %dnn", err measure!nMrgLine);
printf("nMisLine = %dnn", err measure!nMisLine);
printf("nFAZone = %dnn", err measure!nFAZone);
printf("nErrLine = %dnn", err measure!nErrLine);
printf("nGtLine = %dnn", err measure!nGtLine);

free(para);
free(err measure);
return(0);

g

Figure 6.3: sample2.c: A sample code to use the textline-based benchmark-
ing algorithm by calling the algorithm function.

6.3. EXAMPLES 47

CC = gcc

CFLAGS= -O3 -g

INCDIRS = -I ../include -I../dafs/src/tiff/ \

-I ../dafs/src/dafslib/ -I ../dafs/src/rutil/

LIBDIRS= -L ../lib -L../dafs/src/tiff/obj/ \

-L../dafs/src/dafslib/obj/ -L../dafs/src/rutil/obj/

INCS= $(INCDIRS)

LIBS= $(LIBDIRS) -lpset -ldafs -ltiff -lrutil -lm

SRCS = sample1.c sample2.c

OBJS = $(SRCS:.c=.o)

.c.o:

$(CC) $(CFLAGS) $(INCS) -c $<

all: sample1 sample2

sample1: $(OBJS)

$(CC) $(CFLAGS) -o $@ $(INCS) sample1.o $(LIBS)

sample2: $(OBJS)

$(CC) $(CFLAGS) -o $@ $(INCS) sample2.o $(LIBS)

clean:

\rm -f $(OBJS) core

depend:

makedepend -- $(INCS) -- $(SRCS)

DO NOT DELETE

Figure 6.4: The make�le for the code in Figure 6.3 and Figure 6.1.

48 CHAPTER 6. TUTORIAL

Chapter 7

Command Line Speci�cation

In this chapter, detailed description of command line in the PSET package is
given. There are total �ve commands in the PSET package that are described
in the following sections.

7.1 The X-Y Cut Page Segmentation Algo-

rithm Command

The command line is:
Xycut -a <val,val> -c <val,val> <seg file>.

The description is shown as follows:

Xycut The X-Y cut page segmentation algorithm executable.

-a <val,val> Noise removal threshold. The �rst val denotes noise removal
threshold in the vertical direction in an image, whereas the second
val denotes noise removal threshold in the horizontal direction in an
image, the unit of these threshold are in pixels assuming image has a
resolution of 300 dpi. For the image with di�erent resolution, these
thresholds should be scaled accordingly.

-c <val,val> Widest zero valley width cut threshold. The �rst val denotes
widest zero valley width cut threshold in the vertical direction in an
image, whereas the second val denotes widest zero valley width cut
threshold in the horizontal direction in an image, the unit of these
threshold are in pixels assuming image has a resolution of 300 dpi. For

49

50 CHAPTER 7. COMMAND LINE SPECIFICATION

the image with di�erent resolution, these thresholds should be scaled
accordingly.

 Input image �le name. The format of the image should be TIFF.

<seg �le> Output segmentation result �le name. The format of the output
�le is DAFS.

7.2 The Docstrum Page Segmentation Algo-

rithm Command

The command line is:
Docstrum -t <val> -p <val> -u <val> -d <val>

 <cc file> <seg file>.
The description is shown as follows:

-t <val> Nearest neighbor threshold factor parameter.

-p <val> Textline parallel distance threshold factor parameter.

-u <val> Textline perpendicular distance threshold factor parameter.

-d <val> Connected component size ratio factor parameter.

 Input image �le name. The format of the image should be TIFF.

<cc �le> Input connected component �le name. It is an ascii �le where the
coordinates bounding boxes of connected components are stored.

<seg �les> Output segmentation result �le name. The format of the out-
put �le is DAFS.

7.3 The Voronoi-Based Segmentation Algo-

rithm Command

The command line is:
Voronoi -s <val> -n <val> -f <val> -t <val>

 <seg file>.
The description is shown as follows:

7.4. THE ALGORITHM TRAINING COMMAND 51

-s <val> Sampling rate parameter.

-n <val> Maximum size threshold of noise connected component parame-
ter, the unit of it is pixel.

-f <val> Margin control factor parameter for interline spacing estimate.

-t <val> Connected component area ratio factor parameter.

 Input image �le name. The format of the image should be TIFF.

<seg �les> Output segmentation result �le name. The format of the out-
put �le is DAFS.

7.4 The Algorithm Training Command

The command line is:
TrainSeg -p <train protocol file> -o <opt para file>

-b <bench param file> -s <seg param file>
-w <weight file> -t <TrainReport>
-r <Optimal Seg Parameter file>

The description is shown as follows:

TrainSeg The algorithm training package executable.

-p <train protocol �le> Input training protocol �le name.

-o <opt para �le> The parameter �le name of the optimization algorithm
that is used in the training step.

-b <bench param �le> The parameter �le name of the benchmarking al-
gorithm that is used in the training step.

-s <seg param �le> The parameter �le name of the page segmentation
algorithm.

-w <weight �le> The the weight �le name.

-t <TrainReport> The output training report �le name.

-r <Optimal Seg Parameter �le> The output optimal segmentation al-
gorithm parameter �le.

52 CHAPTER 7. COMMAND LINE SPECIFICATION

7.5 The Algorithm Testing Command

The command line is:
TestSeg -p <test protocol file> -b <bench param file>

-s <seg param file> -w <weight file> -t <TestReport>
The description is shown as follows:

TestSeg The algorithm testing package executable.

-p <test protocol �le> Input testing protocol �le name.

-b <bench param �le> The parameter �le name of the benchmarking al-
gorithm that is used in the training step.

-s <seg param �le> The parameter �le name of the page segmentation
algorithm.

-w <weight �le> The the weight �le name.

-t <TestReport> The output testing report �le name.

Chapter 8

Data Structures

In this chapter, data structures that are crucial for user interface are de-
scribed in detail. Each data structure is described in the following categories:
data structure itself, brief explanation, data structure members, comments
and related data structures.

53

54 CHAPTER 8. DATA STRUCTURES

TRAIN PROTOCOL Structure

typedef struct train protocol f
DATASET *dataset;

char *gt dir;

char *img dir;

char *gt suffix;

char *sg suffix;

char *img suffix;

char *train result dir;

char opt alg;

char ben alg;

char seg alg;

g TRAIN PROTOCOL;

This data structure contains all information needed for training setup, such
as the dataset used, where the input should come from and where the output
should go, and which optimization, benchmark and segmentation algorithms
should be used. De�ned in: TrainSeg.h

Members

dataset Pointer to a data structure storing the image �le name and total
number of image �les in a training dataset.

gt dir Specify the location of groundtruth �les.

img dir Specify the location of image �les.

gt su�x Specify the su�x of a groundtruth �le, e.g. the su�x of the
groundtruth �le A001.DAF is .DAF.

sg su�x Specify the su�x of a segmentation result �le, e.g. the su�x of
the segmentation result �le A001.dafs is .dafs.

img su�x Specify the su�x of a image �le, e.g. the su�x of the image �le
A001.BIN.TIF is .BIN.TIF.

train result dir Specify the location where a user want to store the training
result �le.

55

opt alg Specify which optimization algorithm is used in this training pro-
cess, currently the available optimization algorithm is \simplex".

ben alg Specify which benchmark algorithm is used in this training process,
currently the available optimization algorithm is \textline-based".

seg alg Specify which segmentation algorithm is used in this training pro-
cess, currently the available optimization algorithm is \xycut", \doc-
strum" and \voronoi".

Comments

� User should specify the training protocol in terms of members of this
data structure which covers su�cient information for somebody else to
repeat the training result.

See Also

TEST PROTOCOL

56 CHAPTER 8. DATA STRUCTURES

DATASET Structure

typedef struct dataset f
int nImg;

char **ImgName;

g DATASET;

This data structure contains image �le names and the total number of image
�les in the dataset it represents. De�ned in: TrainSeg.h

Members

nImg Variable that stores the total number of image �les in the dataset.

ImgName Pointer to an array each of which points to a image �lename
string.

Comments

� This data structure speci�es the dataset used, user can use di�erent
dataset and store the its information in this data structure, e.g. in
test process, test dataset can be used and in training process, training
dataset can be used.

See Also

57

BENCH PARAM Structure

typedef struct bench param f
int htol;

int vtol;

int hpix;

int vpix;

int wSpl;

int wMrg;

int wFA;

int wSplLine;

int wMrgLine;

int wMisLine;

int wFAZone;

g BENCH PARAM;

This data structure contains parameters needed in benchmark (textline-
based) algorithm. De�ned in: Bench.h

Members

htol Variable that stores horizontal overlapping tolerance threshold in per-
cent. It controls if a overlap between two rectangular regions is signif-
icant or not in horizontally direction.

vtol Same as htol except in vertical direction.

hpix Same as htol except in pixel values.

vpix Same as hpix except in vertical direction.

wSpl Weight for number of split errors.

wMrg Weight for number of horizontally merge errors

wFA Weight for number of False-Alarm errors.

wSplLine Weight for number of split groundtruth textlines.

wMrgLine Weight for number of horizontally merged groundtruth textlines.

58 CHAPTER 8. DATA STRUCTURES

wMisLine Weight for number of Mis-detected groundtruth textlines.

wFAZone Weight for number of False-Alarm regions.

Comments

� This data structure stores textline-based benchmark algorithm param-
eter values. For a di�erent benchmark algorithm, user shall de�ne a
di�erent data structure for it.

See Also

xycut param

59

TEXTLINE Structure

typedef struct textline f
int SG ID[MAX SG];

int SG TYPE[MAX SG];

int sg index;

int iBox;

int miss det;

int h split;

int h merge;

int v split;

int v merge;

int textline flg;

g TEXTLINE;

This data structure contains all information of a segmented textline, includ-
ing physical layout, line ID, relation between the line and other \touching"
segmented zones, error types and error numbers. It is used in textline-based
benchmark algorithm. De�ned in: Bench.h

Members

SG ID[MAX SG] Array that stores the ID of segmented zones that \touches"
the current textline.

SG TYPE[MAX SG] Array that stores the types of \touch" between the
current textline and a zone which can be \enclose", \split" and \apart".

sg index Variable that stores the index of the current textline.

box A data structure that stores physical layout (bounding box) of the cur-
rent textline.

miss det Variable that stores the total number of mis-detected errors that
happen on the current textline.

h split Variable that stores the total number of horizontal split errors that
happen on the current textline.

60 CHAPTER 8. DATA STRUCTURES

h merge Variable that stores the total number of horizontal merge errors
that happen on the current textline.

v split Variable that stores the total number of vertical split errors that
happen on the current textline.

v merge Variable that stores the total number of vertical merge errors that
happen on the current textline.

textline g Variable that signi�es if the current textline is a real textline
or not.

Comments

� This data structure stores all information needed for a segmented textline
to benchmark the segmentation algorithm.

See Also

61

ZONE Structure

typedef struct zone f
iBox box;

int false alarm;

int line counter;

g ZONE;

This data structure contains all information of segmented zones including
physical layout, false-alarm ag and the total number of lines \touched" by
the current zone. De�ned in: Bench.h

Members

box Data structure that stores the physical layout (bounding box) informa-
tion of the current zone.

ImgName Pointer to an array each of which points to a image �lename
string.

false alarm The ag that signals if the current zone is a false-alarm zone
or not.

line counter Variable that stores the total number of segmented lines that
the current zone \touches".

Comments

� This data structure stores all information needed for a segmented zone
to benchmark the segmentation algorithm.

See Also

62 CHAPTER 8. DATA STRUCTURES

ERR MEASURE Structure

typedef struct err measure f
int nSpl;

int nMrg;

int nMis;

int nFA;

int nSplLine;

int nMrgLine;

int nMisLine;

int nFAZone;

int nErrLine;

int nGtLine;

g ERR MEASURE;

This data structure contains all types of error measures made on groundtruth
textlines. De�ned in: Bench.h

Members

nSpl Variable that stores the total number of splits.

nMrg Variable that stores the total number of horizontal merges.

nMis Variable that stores the total number of mis-detects.

nFA Variable that stores the total number of false-alarms.

nSplLine Variable that stores the total number of split groundtruth textlines.

nMrgLine Variable that stores the total number of horizontally merged
textlines.

nMisLine Variable that stores the total number of mis-detected textlines.

nFAZone Variable that stores the total number of false-alarm regions.

nErrLine Variable that stores the total number of incorrectly segmented
textlines (here incorrectly segmented textlines are split, horizontally
merged or mis-detected groundtruth textlines).

63

nGtLine Variable that stores the total number of groundtruth textlines.

Comments

� These error measure types are based on the textline-based benchmark
metric. When user comes up with a new metric, a new set of error
measures have to be used. Moreover, by using di�erent weight on
di�erent error measure type, user can customize the scoring function.

See Also

64 CHAPTER 8. DATA STRUCTURES

DOCSTRUM PARAM Structure

typedef struct docstrum param f
char alg mode;

char *concom dir;

char *concom suffix;

int knn;

int lsize;

int hsize;

int hatol;

int vatol;

int tcc;

int par;

int per;

int scr;

int dis;

g DOCSTRUM PARAM;

This data structure contains all parameters of the Docstrum parameter based
on O'Gorman's implementation ??. De�ned in: DocstrumFunction.h

Members

alg mode Variable that indicate if the algorithm is called by its function or
by its executable, possible values are \FUNC CALL" and \SHELL CALL".

*concom dir Pointer to a connected component �le name string. Con-
nected component bounding box is pre-generated and stored in a con-
nected component �le.

*concom su�x Pointer to a connected component �le name su�x string,
e.g. for a �le named A001.concom, its su�x is \.concom".

knn Variable that stores the total number of nearest neighbors needed for
clustering connected components into textlines.

lsize Variable that stores the minimal size (height in pixels) of connected
component accepted as possible characters.

65

hsize Variable that stores the maximal size (height in pixels) of connected
component accepted as possible characters.

hatol Variable that stores the horizontal angle tolerance threshold for clus-
tering connected components into textlines.

vatol Variable that stores the vertical angle tolerance threshold for cluster-
ing connected components into textlines.

tcc Variable that stores the nearest neighbor threshold factor. It times esti-
mated character spacing and the result is the character spacing thresh-
old to be used for clustering into a textline.

par Variable that stores the parallel distance threshold factor. It times
estimated character spacing the result is the spacing threshold to be
used for clustering textlines into zones.

per Variable that stores the perpendicular distance threshold factor. It
times estimated character spacing the result is the spacing threshold
to be used for clustering textlines into zones.

src Variable that stores the superscript and subscript character distance
threshold factor. It is used to include some close superscript and sub-
script of a character inside a same textline even though the angle be-
tween them exceeds angle tolerance thresholds.

dis Variable that stores the connected component size ratio factor. This
factor is used to divide connected component into two group with very
di�erent size (height in pixels).

Comments

� The �rst three parameters are environment related parameters and the
rest are algorithm related parameters.

See Also

XYCUT PARAM

VORONOI PARAM

66 CHAPTER 8. DATA STRUCTURES

EST PARA Structure

typedef struct est para f
double or;

int cs;

int ts;

g EST PARA;

This data structure contains the parameters to be estimated in the Doc-
strum segmentation algorithm using distance-angle pairs ??. De�ned in:

DocstrumFunction.h

Members

or Variable that stores skew angle (in degrees) of a document.

cs Variable that stores average character spacing.

ts Variable that stores average textline spacing.

Comments

�

See Also

XYCUT PARAM

VORONOI PARAM

67

SIMPLEX PARAM Structure

typedef struct simplex param f
int ndim;

int criflg;

int nmax;

float ftol;

float alpha;

float beta;

float gamma;

float sigma;

float **p;

float *y;

float *t;

float *scale;

g SIMPLEX PARAM;

This data structure contains the parameters of the Simplex optimization
algorithm ??. De�ned in: Simplex.h

Members

ndim Variable that stores the dimensionality of objective function to be
optimized.

crig Variable that indicate which stop-criterion to use, possible values are
NM (Nelder-Mead) or NR (Numerical Recipe).

nmax Variable that stores maximum number of function evaluations al-
lowed.

ftol Variable that stores minimal objective function values di�erent. If the
di�erence is greater than it, stop.

alpha Variable that stores simplex reection coe�cient.

beta Variable that stores simplex contraction coe�cient.

gamma Variable that stores simplex expansion coe�cient.

68 CHAPTER 8. DATA STRUCTURES

sigma Variable that stores simplex shrinkage coe�cient.

**p Variable that stores objective function variable vector.

*y Variable that stores objective function value vector.

*t Variable that stores timing information vector.

*scale Variable that stores initial simplex scale vector.

Comments

� Some parameters are general to any objective function optimization
problem, e.g. \ndim", \ftol", \nmax", **p", *y" and \t". If another
optimization algorithm is used, one probably need these parameters.
The other parameters are unique to the Simplex optimization algo-
rithm.

See Also

69

VORONOI PARAM Structure

typedef struct voronoi param f
char alg mode;

int sr;

int nm;

float fr;

int ta;

int sw;

int Cw;

int Ch;

int Cr;

int Az;

int Al;

int Br;

g VORONOI PARAM;

This data structure contains the parameters of the Voronoi-based segmenta-
tion algorithm ??. De�ned in: VoronoiFunction.h

Members

alg mode Variable that indicate if the algorithm is called by its function or
by its executable, possible values are \FUNC CALL" and \SHELL CALL".

sr Variable that stores the sampling rate on the border of connected com-
ponents.

nm Variable that stores the maximum size threshold of noise connected
component.

fr Variable that stores the margin control factor for inter-line spacing esti-
mate.

ta Variable that stores the area ratio threshold between connected compo-
nents.

sw Variable that stores the size of smoothing window for inter-character and
inter-line spacing estimates.

70 CHAPTER 8. DATA STRUCTURES

Cw Variable that stores the maximum width threshold of connected com-
ponent.

Ch Variable that stores the maximum height threshold of connected com-
ponent.

Cr Variable that stores the maximum connected component aspect ratio
threshold.

Az Variable that stores the minimum zone area threshold.

Al Variable that stores the minimum area threshold for the zones that are
vertical and elongated.

Br Variable that stores the maximum aspect ratio threshold for zones that
are vertical and elongated.

Comments

� The Voronoi-based segmentation algorithm is based on ??.

See Also

71

XYCUT PARAM Structure

typedef struct xycut param f
char alg mode;

int Tnx;

int Tny;

int Tcx;

int Tcy;

g XYCUT PARAM;

This data structure contains the parameters of the X-Y cut segmentation
algorithm ??. De�ned in: XycutFunction.h

Members

alg mode Variable that indicate if the algorithm is called by its function or
by its executable, possible values are \FUNC CALL" and \SHELL CALL".

Tnx Variable that stores the X widest zero valley width threshold in pixels.

Tny Variable that stores the Y widest zero valley width threshold in pixels.

Tcx Vertical noise removal threshold in pixels.

Tcy Horizontal noise removal threshold in pixels.

Comments

� The X-Y cut segmentation algorithm is based on ??.

See Also

72 CHAPTER 8. DATA STRUCTURES

TEST PROTOCOL Structure

typedef struct test protocol f
DATASET *dataset;

char *gt dir;

char *img dir;

char *gt suffix;

char *sg suffix;

char *img suffix;

char *test result dir;

char ben alg;

char seg alg;

g TEST PROTOCOL;

This data structure contains all information needed for test setup, such as
the dataset used, where the input should come from and where the output
should go, and which benchmark and segmentation algorithms should be
used. De�ned in: TestSeg.h

Members

dataset Pointer to a data structure storing the image �le name and total
number of image �les in a test dataset.

gt dir Specify the location of groundtruth �les.

img dir Specify the location of image �les.

gt su�x Specify the su�x of a groundtruth �le, e.g. the su�x of the
groundtruth �le A001.DAF is .DAF.

sg su�x Specify the su�x of a segmentation result �le, e.g. the su�x of
the segmentation result �le A001.dafs is .dafs.

img su�x Specify the su�x of a image �le, e.g. the su�x of the image �le
A001.BIN.TIF is .BIN.TIF.

test result dir Specify the location where a user want to store the test
result �le.

73

ben alg Specify which benchmark algorithm is used in this training process,
currently the available optimization algorithm is \textline-based".

seg alg Specify which segmentation algorithm is used in this training pro-
cess, currently the available optimization algorithm is \xycut", \doc-
strum" and \voronoi".

Comments

� User should specify the test protocol in terms of members of this data
structure which covers su�cient information for somebody else to re-
peat the test result.

See Also

TEST PROTOCOL

74 CHAPTER 8. DATA STRUCTURES

WEIGHT Structure

typedef struct weight f
int wSpl;

int wMrg;

int wMis;

int wFA;

int wSplLine;

int wMrgLine;

int wMisLine;

int wFAZone;

g WEIGHT;

This data structure contains a weight values for each error measure member
except nErrLine and nGtLine in error measure data structure. De�ned in:

Bench.h

Members

wSpl Weight for error measure data structure member nSpl.

wMrg Weight for error measure data structure member nMrg.

wMis Weight for error measure data structure member nMis.

wFA Weight for error measure data structure member nFA.

wSplLine Weight for error measure data structure member nSplLine.

wMrgLine Weight for error measure data structure member nMrgLine.

wMisLine Weight for error measure data structure member nMisLine.

wFAZone Weight for error measure data structure member nFAZone.

Comments

� The weight and error measure is based textline-based metric ??.

See Also

Chapter 9

Function Speci�cations

In this chapter, function speci�cation for each function in the software pack-
age except Voronoi-based segmentation algorithm functions is given. Each
function is modular, implemented in C and can be called by users for their
speci�c evaluation task. Each function is described in the following cate-
gories: function explanation, return value, parameter description, comments
and related functions.

75

76 CHAPTER 9. FUNCTION SPECIFICATIONS

Amotry

oat Amotry(TRAIN PROTOCOL *train protocol, void *seg param,
void *ben param, char *weight �le, SIMPLEX PARAM *simplex param,
oat *psum, void (*genscore)(), int ihi, int *nFuncEval p, oat fac, FILE
*fp)

The Amotry function is used by Simplex function to do simplex operations,
e.g. reection, expansion, contraction and shrinkage. It returns the adjusted
objective function value.

De�ned in: Simplex.c

Return Value
oat.

Parameters

train protocol Data structure to hold training protocol parameter val-
ues(TrainSeg.h).

seg param Data structure to hold segmentation algorithm parameter val-
ues.

ben param Data structure to hold benchmark algorithm parameter values.

weight �le Pointer to a string that stores weight �le name.

simplex param Data structure to hold Nelder-Mead algorithm parameter
values.

psum Objective function variable vectors sum of the simplex.

genscore Objective function to be optimized.

ihi Highest objective function value array index.

nFuncEval p Pointer to a variable holding number of objective function
evaluations.

77

fac Simplex factor.

fp File pointer of a �le that saves the training results.

Comments

�

See Also

78 CHAPTER 9. FUNCTION SPECIFICATIONS

Bench

char *img, void Bench(BENCH PARA *para, char *gtdafs, char *sgdafs,
ERR MEASURE **err measure p)

The Bench function is used to get a set of error measurements by comparing
groundtruth and segmentation result.

De�ned in: GenscoreXycut.h GenscoreDocstrum.h GenscoreVoronoi.h

Return Value
void

Parameters

img Image root name.

para Data structure that stores Benchmarking algorithm parameter values.

gtdafs File name of a groundtruth �le.

sgdafs File name of a segmentation result �le.

err measure p Pointer to a data structure storing error measurement val-
ues.

Comments

� This function is based on Mao and Kanungo's textline based perfor-
mance metric.

See Also

79

BenchScoring

oat BenchScoring(BENCH PARAM *para, ERR MEASURE *err,
WEIGHT *weight)

The BenchScoring function is used to get a score from a set of error mea-
surements and user speci�ed weights. The returned value is a score data
structure which stores both metric value and timing value.

De�ned in: Bench.h

Return Value
oat.

Parameters

para Data structure to hold Benchmarking algorithm parameter values.

err measure Data structure storing error measurement values.

weight Data Structure storing a set of weight values.

Comments

� This function is can be customized by users to have their own scoring
function.

See Also

Bench.c

80 CHAPTER 9. FUNCTION SPECIFICATIONS

CalendarTime

char *CalendarTime()

The CalendarTime function is used to get a formatted calender time output,
e.g. 03/08/2000/ 15:23:38.

De�ned in: WriteTrainReportHeader.h

Return Value
char *.

Parameters

Comments

�

See Also

WriteTrainReportHeader.c

WriteTestReportHeader.c

81

DocstrumFunction

int DocstrumFunction(char *tif �le, char *cc �le,DOCSTRUM PARAM
*para, char *dafs �le)

The DocstrumFunction function is an implementation of the Docstrum seg-
mentation algorithm developed by O'Gorman [15].

De�ned in: GenscoreDocstrum.h

Return Value
int.

Parameters

tif �le Input image �le name.

cc �le Connected components coordinate �le name.

para Data structure to hold Docstrum algorithm parameter values.

dafs �le Segmentation result �le name (in dafs format).

Comments

� This algorithm is a bottom-up page segmentation algorithm ??.

� It only deals with text blocks.

See Also

XycutFunction

VoronoiFunction

82 CHAPTER 9. FUNCTION SPECIFICATIONS

EvalDocstrum

void EvalDocstrum(TEST PROTOCOL *test protocol, void *docstrum param,
void *bench param, char *weight �le, char **test report p)

The EvalDocstrum function is used to evaluate the Docstrum segmentation
algorithm on test dataset in the test phase.

De�ned in: Test.h

Return Value
void.

Parameters

test protocol Data structure to hold test protocol parameter values.

docstrum param Data structure to hold the Docstrum algorithm param-
eter values.

ben param Data structure to hold benchmark algorithm parameter values.

weight �le Pointer to a string storing weight �le name.

test report p Pointer to a pointer that points to a string that stores the
test report �le name.

Comments

� User can come up with their own evaluation function of his algorithm.

See Also

EvalXycut

EvalVoronoi

DocstrumFunction

83

EvalVoronoi

void EvalVoronoi(TEST PROTOCOL *test protocol, void *voronoi param,
void *bench param, char *weight �le, char **test report p)

The EvalVoronoi function is used to evaluate the Voronoi-based segmenta-
tion algorithm on test dataset in the test phase.

De�ned in: Test.h

Return Value
void.

Parameters

test protocol Data structure to hold test protocol parameter values.

voronoi param Data structure to hold the Docstrum algorithm parameter
values.

bench param Data structure to hold benchmark algorithm parameter val-
ues.

weight �le Pointer to a string storing weight �le name.

test report p Pointer to a pointer that points to a string that stores the
test report �le name.

Comments

� User can come up with their own evaluation function of his algorithm.

See Also

EvalDocstrum

EvalXycut

VoronoiFunction

Voronoi

84 CHAPTER 9. FUNCTION SPECIFICATIONS

EvalXycut

void EvalXycut(TEST PROTOCOL *test protocol, void *xycut param,
void *bench param, char *weight �le, char **test report p)

The EvalXycut function is used to evaluate the X-Y cut segmentation algo-
rithm on test dataset in the test phase.

De�ned in: Test.h

Return Value
void.

Parameters

test protocol Data structure to hold test protocol parameter values.

xycut param Data structure to hold the X-Y cut algorithm parameter val-
ues.

bench param Data structure to hold benchmark algorithm parameter val-
ues.

weight �le Pointer to a string storing weight �le name.

test report p Pointer to a pointer that points to a string that stores the
test report �le name.

Comments

� User can come up with their own evaluation function of his algorithm.

See Also

EvalDocstrum

EvalVoronoi

XycutFunction

85

FreeJobTest

void FreeJobTest(TEST PROTOCOL *test protocol, char *test report,
char *test protocol �le, void *ben param, void *seg param, char *seg �le,
char *ben �le, char *weight �le)

The FreeJobTest function is used to free any allocated memory that have not
been freed in testing phase.

De�ned in: TestSeg.h

Return Value
void.

Parameters

test protocol Data structure to hold testing protocol parameter values.

test report String array to hold testing report �le name.

test protocol �le String array to hold testing protocol parameter �le name.

ben param Data structure to hold benchmark algorithm parameter values.

seg param Data structure to hold segmentation algorithm parameter val-
ues.

seg �le String array to hold segmentation algorithm parameter �le name.

ben �le String array to hold benchmark algorithm parameter �le name.

weight �le Pointer to a string storing weight �le name.

Comments

�

See Also

FreeJobTrain

86 CHAPTER 9. FUNCTION SPECIFICATIONS

FreeJobTrain

void FreeJobTrain(TRAIN PROTOCOL *train protocol, char *train report,
char *opt seg param, char *train protocol �le, void *opt param, void *ben param,
void *seg param, char *opt �le, char *seg �le, char *ben �le, char *weight �le)

The FreeJobTrain function is used to free any allocated memory that have
not been freed in training phase.

De�ned in: TrainSeg.h

Return Value
void.

Parameters

train protocol Data structure to hold training protocol parameter values.

train report Pointer to a train report �le name string.

opt seg param Pointer to a �le name string of a �le storing optimal seg-
mentation algorithm parameters.

train protocol �le String array to hold training protocol parameter �le
name.

opt param Data structure to hold optimization algorithm parameter val-
ues.

ben param Data structure to hold benchmark algorithm parameter values.

seg param Data structure to hold segmentation algorithm parameter val-
ues.

opt �le String array to hold optimization algorithm parameter �le name.

seg �le String array to hold segmentation algorithm parameter �le name.

ben �le String array to hold benchmark algorithm parameter �le name.

weight �le Pointer to a string storing weight �le name.

87

Comments

�

See Also

FreeJobTest

88 CHAPTER 9. FUNCTION SPECIFICATIONS

GenscoreDocstrum

void GenscoreDocstrum(TRAIN PROTOCOL *train protocol, void
*docstrum param, void *bench param, char *weight �le, oat *val, SCORE
**score p)

The GenscoreDocstrum function is used to generate a score from the Doc-
strum segmentation algorithm segmentation result and the corresponding
groundtruth using a benchmark algorithm.

De�ned in: Train.h

Return Value
void.

Parameters

train protocol Data structure to hold training protocol parameter values.

docstrum param Data structure to hold Docstrum algorithm parameter
values.

bench param Data structure to hold benchmark algorithm parameter val-
ues.

weight �le Pointer to a string storing weight �le name.

val Array to hold objective function variable vector values. Here, it holds
the values of segmentation algorithm parameter vector to be trained.

score p Pointer to a data structure that holds a score and timing measure.

Comments

� This function behaves as an objective function. User can come up with
other objective functions to be optimized.

See Also

GenscoreXycut

89

GenscoreVoronoi

GenscoreTestDriver

90 CHAPTER 9. FUNCTION SPECIFICATIONS

GenscoreTestDriver

void GenscoreTestDriver(TRAIN PROTOCOL *train protocol, void
*seg param, void *bench param, char *weight �le, oat *val, SCORE
**score p)

The GenscoreTestDriver function is used to test out optimization algorithm
on a possible multivariate function with known minimum/maximum and
variable vector values to get this minimum/maximum value.

De�ned in: Train.h

Return Value
void.

Parameters

train protocol Data structure to hold training protocol parameter values.

seg param Data structure to hold segmentation algorithm parameter val-
ues.

bench param Data structure to hold benchmark algorithm parameter val-
ues.

weight �le Pointer to a string storing weight �le name.

val Array to hold objective function variable vector values.

score p Pointer to a data structure that holds a score and timing measure.

Comments

� This function behaves as an objective function with known character-
istics for testing. User can come up with other test objective function
to validate the optimization algorithm.

See Also

GenscoreDocstrum

91

GenscoreXycut

GenscoreVoronoi

92 CHAPTER 9. FUNCTION SPECIFICATIONS

GenscoreVoronoi

void GenscoreVoronoi(TRAIN PROTOCOL *train protocol, void *voronoi param,
void *bench param, char *weight �le, oat *val, SCORE **score p)

The GenscoreVoronoi function is used to generate a score from the Voronoi-
based segmentation algorithm segmentation result and the corresponding
groundtruth using a benchmark algorithm.

De�ned in: Train.h

Return Value
void.

Parameters

train protocol Data structure to hold training protocol parameter values.

voronoi param Data structure to hold Voronoi algorithm parameter val-
ues.

bench param Data structure to hold benchmark algorithm parameter val-
ues.

weight �le Pointer to a string storing weight �le name.

val Array to hold objective function variable vector values.

score p Pointer to a data structure that holds a score and timing measure.

Comments

� This function behaves as an objective function.

� User can come up with other objective function to be optimized.

See Also

GenscoreDocstrum

GenscoreXycut

GenscoreTestDriver

93

GenscoreXycut

void GenscoreXycut(TRAIN PROTOCOL *train protocol, void *xy-
cut param, void *bench param, char *weight �le, oat *val, SCORE **score p)

The GenscoreXycut function is used to generate a score from the X-Y cut seg-
mentation algorithm segmentation result and the corresponding groundtruth
using a benchmark algorithm.

De�ned in: Train.h

Return Value
void.

Parameters

train protocol Data structure to hold training protocol parameter values.

voronoi param Data structure to hold X-Y cut algorithm parameter val-
ues.

bench param Data structure to hold benchmark algorithm parameter val-
ues.

weight �le Pointer to a string storing weight �le name.

val Array to hold objective function variable vector values.

score p Pointer to a score data structure that stores a score measure and
timing measure.

Comments

� This function behaves as an objective function.

� User can come up with any other objective function to be optimized.

See Also

GenscoreDocstrum

94 CHAPTER 9. FUNCTION SPECIFICATIONS

GenscoreVoronoi

GenscoreTestDriver

95

ParseArgTest

void ParseArgTest(int argc, char **argv, char **test report p, char
**test protocol �le p, char **seg �le p, char **ben �le p, char **weight �le p)

The ParseArgTest function is used to parse the command line arguments.

De�ned in: TestSeg.h

Return Value
void.

Parameters

argc Total number of command line arguments.

argv Pointer to commend line argument string.

test report p Pointer to an string that stores the testing report �le name.

test protocol �le p Pointer to an string that stores the testing protocol
�le name.

seg �le p Pointer to the segmentation algorithm parameter �le name string.

ben �le p Pointer to the benchmark algorithm parameter �le name string.

weight �le Pointer to the weight �le name string.

Comments

�

See Also

ParseArgTrain

96 CHAPTER 9. FUNCTION SPECIFICATIONS

ParseArgTrain

void ParseArgTrain(int argc, char **argv, char **train report p, char
**opt seg param p, char **train protocol �le p, char **opt �le p, char **seg �le p,
char **ben �le p, char **weight �le p)

The ParseArgTrain function is used to parse the command line arguments.

De�ned in: TrainSeg.h

Return Value
void.

Parameters

argc Total number of command line arguments.

argv Pointer to a commend line argument string.

train report p Pointer to a pointer that points to a training report �le
name string.

opt seg param p Pointer to a pointer that points to a �le name string of
a �le that saving a set of optimal segmentation algorithm parameters.

train protocol �le p Pointer to a training protocol �le name string.

opt �le p Pointer to a optimization algorithm parameter �le name string.

seg �le p Pointer to a segmentation algorithm parameter �le name string.

ben �le p Pointer to a benchmark algorithm parameter �le name string.

weight �le Pointer to the weight �le name string.

Comments

�

See Also

ParseArgTest

97

ReadBenchParam

void ReadBenchParam(char *bench �le, void **ben param p)

The ReadBenchParam function is used to read benchmark algorithm param-
eter values from a �le into a data structure.

De�ned in: TrainSeg.h

Return Value
void.

Parameters

bench �le Pointer to a benchmark algorithm parameter �le name string.

bench param p Pointer to a data structure holding benchmark algorithm
parameter values.

Comments

� For a new algorithm, user can write its own parameter reading function
like this one.

See Also

ReadDocstrumParam

ReadFileNames

ReadSimplexParam

ReadTrainProtocol

ReadTestProtocol

ReadVoronoiParam

ReadXycutParam

98 CHAPTER 9. FUNCTION SPECIFICATIONS

ReadDocstrumParam

void ReadDocstrumParam(char *docstrum �le, void **docstrum param p)

The ReadDocstrumParam function is used to read Docstrum segmentation
algorithm parameter values from a �le into a data structure.

De�ned in: TrainSeg.h

Return Value
void.

Parameters

docstrum �le Pointer to a string that stores the Docstrum segmentation
algorithm parameter �le name.

docstrum param p Pointer to a data structure holding Docstrum algo-
rithm parameter values.

Comments

� For a new algorithm, user can write its own parameter reading function
like this one.

See Also

ReadBenchParam

ReadFileNames

ReadSimplexParam

ReadTrainProtocol

ReadTestProtocol

ReadVoronoiParam

ReadXycutParam

99

ReadFileNames

void ReadFileNames(char *data�le, DATASET **dataset p)

The ReadFileNames function is used to read �le names from a data �le into
a dataset data structure.

De�ned in: TrainSeg.h

Return Value
void.

Parameters

data�le Pointer to a dataset-�le name string.

dataset p Pointer to a data structure holding dataset image �le names.

Comments

� For a new algorithm, user can write its own parameter reading function
like this one.

See Also

ReadBenchParam

ReadDocstrumParam

ReadSimplexParam

ReadTrainProtocol

ReadTestProtocol

ReadVoronoiParam

ReadXycutParam

100 CHAPTER 9. FUNCTION SPECIFICATIONS

ReadSimplexParam

void ReadSimplexParam(char *simplex �le, void **simplex param p)

The ReadSimplexParam function is used to read Simplex optimization algo-
rithm parameter values from a �le into a data structure.

De�ned in: TrainSeg.h

Return Value
void.

Parameters

simplex �le Pointer to a Simplex optimization algorithm parameter �le
name string.

simplex param p Pointer to a data structure holding Simplex algorithm
parameter values.

Comments

� For a new algorithm, user can write its own parameter reading function
like this one.

See Also

ReadBenchParam

ReadDocstrumParam

ReadFileNames

ReadTrainProtocol

ReadTestProtocol

ReadVoronoiParam

ReadXycutParam

101

ReadTestProtocol

void ReadTestProtocol(char *test protocol �le, TEST PROTOCOL
**test protocol p)

The ReadTestProtocol function is used to read testing protocol parameter
values from a �le into a data structure.

De�ned in: TestSeg.h

Return Value
void.

Parameters

test protocol �le Pointer to a testing protocol parameter �le name string.

test protocol p Pointer to a data structure holding testing protocol pa-
rameter values.

Comments

� For a new algorithm, user can write its own parameter reading function
like this one.

See Also

ReadBenchParam

ReadDocstrumParam

ReadFileNames

ReadSimplexParam

ReadTrainProtocol

ReadVoronoiParam

ReadXycutParam

102 CHAPTER 9. FUNCTION SPECIFICATIONS

ReadTrainProtocol

void ReadTrainProtocol(char *train protocol �le,TRAIN PROTOCOL
**train protocol p)

The ReadTrainProtocol function is used to read training protocol parameter
values from a �le into a data structure.

De�ned in: TrainSeg.h

Return Value
void.

Parameters

train protocol �le Pointer to a training protocol parameter �le name string.

train protocol p Pointer to a data structure holding training protocol pa-
rameter values.

Comments

� For a new algorithm, user can write its own parameter reading function
like this one.

See Also

ReadBenchParam

ReadDocstrumParam

ReadFileNames

ReadSimplexParam

ReadTestProtocol

ReadVoronoiParam

ReadXycutParam

103

ReadVoronoiParam

void ReadVoronoiParam(char *voronoi �le, void **voronoi param p)

The ReadVoronoiParam function is used to read Voronoi-based segmentation
algorithm parameter values from a �le into a data structure.

De�ned in: TrainSeg.h

Return Value
void.

Parameters

voronoi �le Pointer to a Voronoi-based algorithm parameter �le name string.

voronoi param p Pointer to a data structure holding Voronoi-based algo-
rithm parameter values.

Comments

� For a new algorithm, user can write its own parameter reading function
like this one.

See Also

ReadBenchParam

ReadDocstrumParam

ReadFileNames

ReadSimplexParam

ReadTrainProtocol

ReadXycutParam

104 CHAPTER 9. FUNCTION SPECIFICATIONS

ReadXycutParam

void ReadXycutParam(char *xycut �le, void **xycut param p)

The ReadXycutParam function is used to read X-Y cut segmentation algo-
rithm parameter values from a �le into a data structure.

De�ned in: TrainSeg.h

Return Value
void.

Parameters

xycut �le Pointer to the X-Y cut algorithm parameter �le name string.

xycut param p Pointer to a data structure holding the X-Y cut algorithm
parameter values.

Comments

� For a new algorithm, user can write its own parameter reading function
like this one.

See Also

ReadBenchParam

ReadDocstrumParam

ReadFileNames

ReadSimplexParam

ReadTrainProtocol

ReadVoronoiParam

105

ReadWeight

void ReadWeight(char *weight �le, WEIGHT **weight p)

The ReadWeight function is used to read a set of user speci�ed weight values
from a �le into a data structure.

De�ned in: Bench.h

Return Value
void.

Parameters

weight �le Pointer to the weight �le name string.

weight p Pointer to a data structure holding a set of weight values.

Comments

�

Simplex

int Simplex(TRAIN PROTOCOL *train protocol, SIMPLEX PARAM
*opt param, void *ben param, void *seg param, char *weight �le, void
(*genscore)(), char **train report p, char **opt seg param p)

The Simplex function is an implementation of Nelder-Mead Simplex opti-
mization ?? algorithm.

De�ned in: Train.h

Return Value
int.

Parameters

106 CHAPTER 9. FUNCTION SPECIFICATIONS

train protocol Pointer to a data structure holding the training protocol
parameter values.

opt param Pointer to a data structure holding the Simplex optimization
algorithm parameter values.

ben param Pointer to a data structure holding the benchmark algorithm
parameter values.

seg param Pointer to a data structure holding the segmentation algorithm
parameter values.

weight �le Pointer to a string storing weight �le name.

(*genscore)() Pointer to a objective function.

train report p Pointer to a pointer that points to a training report �le
name string.

opt seg param p Pointer to a pointer that points to a �le name of a �le
storing optimal segmentation algorithm parameters.

Comments

� This optimization algorithm is a local optimization algorithm, it deals
with the objective functions that have no explicit mathematical forms
(or black-box objective function).

See Also

Generic

SimulatedAnnealing

107

Test

void Test(TEST PROTOCOL *test protocol, void *ben param, void
*seg param, char *weight �le, char **test report p)

The Test function is used to evaluate a given page segmentation algorithm
using a given benchmarking algorithm in the testing phase.

De�ned in: TrainSeg.h

Return Value
void.

Parameters

test protocol Pointer to a data structure holding a testing protocol param-
eter values.

ben param Pointer to a data structure holding a benchmark algorithm pa-
rameter values.

seg param Pointer to a data structure holding a segmentation algorithm
parameter values.

weight �le Pointer to a string storing weight �le name.

test report p Pointer to a testing report �le name string.

Comments

�

See Also

Train

108 CHAPTER 9. FUNCTION SPECIFICATIONS

Train

void Train(TRAIN PROTOCOL *train protocol, void *opt param, void
*ben param, void *seg param, char *weight �le, char **train report p, char
**opt seg param p)

The Train function is used to train or optimize a given page segmentation
algorithm using a given optimization algorithm and benchmark algorithm in
the training phase.

De�ned in: TrainSeg.h

Return Value
void.

Parameters

train protocol Pointer to a data structure holding a training protocol pa-
rameter values.

opt param Pointer to a data structure holding a Simplex optimization al-
gorithm parameter values.

ben param Pointer to a data structure holding a benchmark algorithm pa-
rameter values.

seg param Pointer to a data structure holding a segmentation algorithm
parameter values.

weight �le Pointer to a string storing weight �le name.

train report p Pointer to a training report �le name string.

opt seg param p Pointer to a pointer that points to a �le name of a �le
storing optimal segmentation algorithm parameters.

Comments

�

109

See Also

Test

110 CHAPTER 9. FUNCTION SPECIFICATIONS

Usage

void Usage()

This function is required by a shell system call.

De�ned in: TrainSeg.h

Return Value
void.

Parameters

Comments

�

See Also

Test

111

VoronoiFunction

int VoronoiFunction(char *tif �lename, VORONOI PARAM *para,
char *dafs �lename)

The VoronoiFunction function is an implementation of the Voronoi-based
segmentation algorithm developed by Kise et. al.

De�ned in: GenscoreVoronoi.h

Return Value
int.

Parameters

tif �lename Image �le name.

para Data structure holding the Voronoi-based segmentation algorithm pa-
rameter values.

dafs �le Segmentation result �le name.

Comments

� This algorithm is a bottom-up algorithm ??.

� It only deals with text blocks.

� This code is obtained directory from the author (Dr. Kise) which have
some memory related bugs, continuous run of this function can cause
segmentation fault. Hence a shell call mode is recommended.

See Also

DocstrumFunction

XycutFunction

112 CHAPTER 9. FUNCTION SPECIFICATIONS

WriteTestReportHeader

void WriteTestReportHeader(int argc, char **argv, TEST PROTOCOL
*test protocol, char **�le p)

The WriteTestReportHeader function is used to write testing report header
information, e.g. user, purpose, date, working directory, machine name, op-
erating system version and command line, etc.

De�ned in: TestSeg.h

Return Value
void.

Parameters

argc Total number of command line arguments.

argv Pointer to a commend line argument string.

test protocol Data structure holding testing protocol parameter values.

�le p Testing report �le name.

Comments

� This automatically printout experimental environment parameters which
can be conveniently referred in the future.

See Also

WriteTrainReportHeader

113

WriteTrainReportHeader

voidWriteTrainReportHeader(int argc, char **argv, TRAIN PROTOCOL
*train protocol, char **�le p)

TheWriteTrainReportHeader function is used to write training report header
information, e.g. user, purpose, date, working directory, machine name, op-
erating system version and command line, etc.

De�ned in: TrainSeg.h

Return Value
void.

Parameters

argc Total number of command line arguments.

argv Pointer to a commend line argument string.

train protocol Data structure holding a training protocol parameter val-
ues.

�le p Training report �le name.

Comments

� This automatically printout experimental environment parameters which
can be conveniently referred in the future.

See Also

WriteTestReportHeader

114 CHAPTER 9. FUNCTION SPECIFICATIONS

XycutFunction

int XycutFunction(char *tif �lename, XYCUT PARAM *para, char
*dafs �lename)

The XycutFunction function is an implementation of the X-Y cut segmenta-
tion algorithm developed by Nagy.

De�ned in: GenscoreXycut.h

Return Value
int.

Parameters

tif �lename Image �le name.

para Data structure holding the X-Y cut algorithm parameter values.

dafs �lename Segmentation result �le name.

Comments

� This algorithm is a top-down algorithm ??.

See Also

DocstrumFunction

VoronoiFunction

115

Voronoi-related functions

bit func, brect, cline, dinfo, edgelist, erase, geometry, hash, heap,
img to site, label func, memory, output, read image, sites, usage,
voronoi

The functions are used for the implementation of the Voronoi-based segmen-
tation algorithm developed by Kise et.al.

De�ned in: VoronoiFunction.h

Return Value

Parameters

Comments

� This functions are developed by a di�erent programmer, the detailed
information is not available.

See Also

116 CHAPTER 9. FUNCTION SPECIFICATIONS

nrutil functions

nrerror, vector, ivector, dvector, matrix, dmatrix, imatrix, cma-
trix, submatrix, free vector, free ivector, free dvector, free matrix,
free dmatrix, free imatrix, free cmatrix, free submatrix, convert matrix,
free convert matrix

The functions are Numerical Recipe standard functions for array and matrix
manipulations.

De�ned in: nrutil.h

Return Value

Parameters

Comments

�

See Also

117

sort

sort, sort2

The functions are Numerical Recipe Heapsort functions.

De�ned in: DocstrumFunction.h

Return Value

Parameters

Comments

�

See Also

118 CHAPTER 9. FUNCTION SPECIFICATIONS

util

err, Alloc, fOpen, sh c

The functions are utility functions that can be used to call a function by
their executable.

De�ned in: util.h

Return Value

Parameters

Comments

�

See Also

Bibliography

[1] DARPA Broadcast News Workshop, Herndon, VA, Feburary 1999.
http://www.itl.nist.gov/iaui/894.01/publications/darpa99/index.htm.

[2] A. D. Bagdanov. The fourth annual test of OCR accuracy. In A. D. Bag-
danov, editor, Annual Report. Information Science Research Institute,
University of Nevada, Las Vegas, NV, 1995.

[3] R. A. Becker, J. M. Chambers, and A. R. Wilks. The New S Language.
Wadsworth & Brooks/Cole, Paci�c Grove, CA, 1988.

[4] Caere Co. Caere Developer's Kit 2000. http://www.caere.com/.

[5] D. Dori, I. Phillips, and R. M. Haralick. Incorporating documenta-
tion and inspection into computer integrated manufacturing: An object-
process approach. In S. Adiga, editor, Applications of Object-Oriented
Technology in Manufacturing. Chapman & Hall, London, UK, 1994.

[6] J. J. Foster. Data Analysis Using SPSS for Windows | A Beginner's
Guide. SAGE Publications, London, UK, 1998.

[7] C. Ghezzi, M. Jazayeri, and D. Mandrioli. Software Engineering. Pren-
tice Hall, Englewood Cli�s, NJ, 1991.

[8] R. M. Haralick and L. G. Shapiro. Computer and Robot Vision. Addison-
Wesley, Reading, MA, 1992.

[9] K. Kise, A. Sato, and M. Iwata. Segmentation of page images using
the area Voronoi diagram. Computer Vision and Image Understanding,
70:370{382, 1998.

119

120 BIBLIOGRAPHY

[10] S. Mao and T. Kanungo. A methodology for empirical performance
evaluation of page segmentation algorithms. Technical Report CAR-
TR-933, University of Maryland, College Park, MD, December 1999.
http://www.cfar.umd.edu/~kanungo/pubs/trsegeval.ps.

[11] S. Mao and T. Kanungo. Automatic training of page segmentation
algorithms: An optimization approach. In Proceedings of International
Conference on Pattern Recognition, pages 531{534, Barcelona, Spain,
September 2000.

[12] S. Mao and T. Kanungo. Empirical performance evaluation of page seg-
mentation algorithms. In Proceedings of SPIE Conference on Document
Recognition and Retrieval, pages 303{314, San Jose, CA, January 2000.

[13] G. Nagy, S. Seth, and M. Viswanathan. A prototype document image
analysis system for technical journals. Computer, 25:10{22, 1992.

[14] J. Nelder and R. Mead. A simplex method for function minimization.
Computer Journal, 7:308{313, 1965.

[15] L. O'Gorman. The document spectrum for page layout analysis. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 15:1162{
1173, 1993.

[16] T. Pavlidis and J. Zhou. Page segmentation and classi�cation. Graphical
Models and Image Processing, 54:484{496, 1992.

[17] ScanSoft Co. TextBridge: Application Programmer's Interface.
http://www.scansoft.com.

[18] E. M. Voorhees and D. K. Harman, editors. The Seventh Text REtrieval
Conference (TREC 7). National Institute of Standards and Technology,
1998. http://trec.nist.gov/pubs.html.

[

Index]Index

121

Index

Amotry, 48
BENCH PARAM Structure, 29
BenchScoring, 51
Bench, 50
CalendarTime, 52
DATASET Structure, 28
DOCSTRUM PARAMStructure, 36
DocstrumFunction, 53
ERR MEASURE Structure, 34
EST PARA Structure, 38
EvalDocstrum, 54
EvalVoronoi, 55
EvalXycut, 56
FreeJobTest, 57
FreeJobTrain, 58
GenscoreDocstrum, 59
GenscoreTestDriver, 60
GenscoreVoronoi, 61
GenscoreXycut, 62
ParseArgTest, 63
ParseArgTrain, 64
ReadBenchParam, 65
ReadDocstrumParam, 66
ReadFileNames, 67
ReadSimplexParam, 68
ReadTestProtocol, 69
ReadTrainProtocol, 70
ReadVoronoiParam, 71
ReadXycutParam, 72
SIMPLEX PARAM Structure, 39

Simplex, 73
TEST PROTOCOL Structure, 44
TEXTLINE Structure, 31
TRAIN PROTOCOL Structure, 26
Test, 75
Train, 76
Usage, 77
VORONOI PARAM Structure, 41
Voronoi-related functions, 82
VoronoiFunction, 78
WriteTestReportHeader, 79
WriteTrainReportHeader, 80
XYCUT PARAM Structure, 43
XycutFunction, 81
ZONE Structure, 33
nrutil functions, 83
sort, 84
util, 85

122

