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Abstract

Two document degradation models that model

the perturbations introduced during the document

printing and scanning process were proposed re-

cently. Although degradation models are very use-

ful, it is very important that we validate these mod-

els by comparing the synthetically generated images

against real images. In recent past, two di�erent

validation procedures have also been proposed to

validate such document degradation models. These

validation procedures are functions of sample size

and various distance functions. In this paper we

outline a statistical methodology to compare the

various validation schemes that result by using dif-

ferent distance functions. This methodology is gen-

eral enough to compare any two validation schemes.

Keywords: Document Degradation Models,

Model Validation, Distance Functions, Robust

Statistics

1 Introduction

Two document degradation models were proposed

recently that model the perturbations introduced

during the document printing and scanning pro-

cess. One models the physical image formation

process [2], while the other directly models the spa-

tial structure statistics of the degraded document

image [7, 8]. Such image formation models are ex-

tremely useful in designing optimal noise removal

algorithms, OCR algorithm development, exper-

imental performance evaluation, etc.. Although

degradation models are very useful, it is very im-

portant that we validate these models by compar-

ing the synthetically generated images against real

images. Otherwise, the OCR performance we get

on synthetic images are not reliable estimates of the

OCR performance one would get on real images.

Interestingly, two di�erent validation procedures

have also been proposed to validate such document

degradation models [6, 5, 10, 9]. It is important

that we know which validation scheme is better,

not just by looking at the results, but by statis-

tical arguments. Furthermore, both these valida-

tion procedures are functions of the sample size

and choice of various distance functions used in in-

termediate steps. In this paper we use the power

function to study compare the e�ects of sample

sizes and distance metrics on the validation pro-

cedure. We study how the validation procedure

behaves when one of the samples is corrupted with

outlier, which happens quite often in a real world

OCR setting.

In section 2 we describe the document degra-

dation model validation problem and give a non-

parametric hypothesis methodology for rejecting a

model. The power function approach to evaluating

validation procedures is given in section 3. In sec-

tion 4 we give the various robust and non-robust

distance functions that can be used in the hypothe-

sis testing methodology described in section 2. Ex-

perimental results of the application of the valida-

tion methodology is given in section 4.

2 The Document Degradation

Model Validation Problem

In this section we describe a non-parametric vali-

dation procedure that can be used to statistically

validate any document degradation model. The

details of the document degradation model and es-

timation of the model parameters can be found in



[7, 8, 6, 5]. Suppose we are given a sequence of real

degraded characters X = fx

1

; x

2

; : : : ; x

N

g; and an-

other sequence of arti�cially degraded characters

Y = fy

1

; y

2

; : : : ; y

M

g that were created by perturb-

ing an ideal character with a document degrada-

tion model. We can assume that the characters x

i

and y

i

are binary matrices of size (approximately)

30 � 30: The question that needs to be addressed

is whether or not the x

i

's and y

i

's come from the

same underlying population. At this point it does

not matter where the x

i

's and the y

i

's came from {

x

i

's and y

i

's could both be arti�cially generated, or

both be real instances, or one of them could be ar-

ti�cial and the other real. A statistical hypothesis

test can be performed to test the null hypothesis

that the underlying population distributions of x

i

's

and y

i

's are the same.

Standard parametric hypothesis testing proce-

dures (chi-square test etc) are not applicable since

(i) the dimensions of x

i

and y

i

are not �xed, (ii) the

vectors are binary and in particular not Gaussian,

and (iii) the size of the space to which they be-

long is very large (approximately 2

900

if we assume

each character to be of dimension 30�30) Instead,

we now describe a non-parametric permutation test

(see [4, 3]) that will perform this hypothesis test.

1. Given (i) real data X = fx

1

; x

2

; : : : ; x

N

g; (ii)

synthetic data Y = fy

1

; y

2

; : : : ; y

M

g; (iii) a dis-

tance function on sets, �(X; Y ); (iv) a distance

function on characters, �(x; y); (iv) size of test

�; (i.e. misdetection rate = 0.05).

2. Compute d

0

= �(X; Y ):

3. Create a new sample Z = fx

1

; : : : ; x

N

; y

1

;

: : : ; y

M

g: Thus Z has N +M elements labeled

z

i

; i = 1; : : : ; N +M:

4. Randomly permute (reorder) Z:

5. Partition the set Z into two sets X

0

and

Y

0

where X

0

= fz

1

; : : : ; z

N

g and Y

0

=

fz

N+1

; : : : ; z

N+M

g:

6. Compute d

i

= �(X

0

; Y

0

):

7. Repeat steps 4, 5 and 6 K times to get K

distances d

1

; : : : ; d

K

:

8. Compute the distribution of d

i

's empirically:

P (d � v) = #fkjd

k

� vg=K

9. Compute the P-value: �

0

= P (d � d

0

):

10. Reject the null hypothesis that the two sam-

ples come from the same population if �

0

< �:

The above procedure computes the null distri-

bution of the distance function �(X; Y ) nonpara-

metrically. In the standard parametric hypothesis

testing procedure, the form of the distributions of x

and y are known (usually Gaussian) and hence the

null distribution of �(X; Y ) is known. In contrast,

we compute the null distribution by randomly per-

muting the data set Z and creating a histogram of

d

i

's.

By design, the size of the test, �; is �xed. Thus,

irrespective of the distance function �(X; Y ); the

percentage of times that the validation procedure

will reject a true null hypothesis that the two sam-

ples are from the same underlying population is �:

In other words, the probability of mis-detection is

�:What is not �xed is the probability of false alarm,


: Thus, although the use of various distance func-

tions � and � will give rise to the same probability

of mis-detection, �; each has a di�erent probabil-

ity of false alarm, 
; which is the probability that

the procedure claims that X and Y come from the

same underlying populations when, in fact, they

come from di�erent underlying populations.

It is important to note that if two samples X

and Y pass the validation procedure, it does not

mean that we accept the null hypothesis. Rather,

it means that we do not have enough statistical

evidence to reject the null hypothesis. But, when

we reject a null hypothesis, it does mean that we

have enough statistical evidence to reject the null

hypothesis.

3 Power Functions

Let us assume that the x

i

's are distributed as

F (�

X

) and the y

i

's are distributed as F (�

Y

); where

�

X

and �

Y

are the parameters of the distributions.

And, let the null hypothesis, H

N

; and the alternate

hypothesis, H

A

; be:

H

N

: �

X

= �

Y

(1)

H

A

: �

X

6= �

Y

(2)

The size of the test, �; is �xed by the algorithm

designer and is given as

� = P (H

A

jH

N

is true) : (3)

The plot of 1 minus the probability of false alarm

as a function of � is the power function. Thus,

if we �x the distribution parameter of the x

i

's at

�

X

= �

0

; and vary the distribution parameter value

�

Y

= � for y

i

's, the power function is denoted by




�

0

(�); and is given by:




�

0

(�) = P (H

A

j�

X

= �

0

and �

Y

= �) : (4)



Thus 1 � 


�

0

(�) is the probability of false alarm.

The power function should have a minimum at

�

X

= �

Y

= �

0

; with 


�

0

(�

0

) = �; and should in-

crease on either side and go up to 1 when �

Y

= �

is very far from �

0

:

Let us say there are two validation schemes A

and B with test size � and power functions 


A

�

0

(�)

and 


B

�

0

(�): Since the size � is same for both the

schemes, A is better than B if the false alarm rate

of A is less than the false alarm rate of B: That

is A is better than B if 1 � 


A

�

0

(�) < 1� 


B

�

0

(�) or




A

�

0

(�) > 


B

�

0

(�) : If the above relation is true for all

values of �; then the procedure A is said to be uni-

formly more powerful than B: That is, the scheme

A is better than scheme B if the power function

plot of A is above the power function plot of B for

all values of �: Generalizing, if there are many val-

idation schemes, the one whose power function is

above all other power functions, is the best scheme.

There is no clear winner if the power functions in-

tersect { for some regions in the parameter space

on scheme is better while in other regions the other

is better.

For a given validation scheme, if we increase the

sample sizes N andM; the power function changes

and the new power function is higher than the old

power function, and so by de�nition is more pow-

erful.. Thus, the sensitivity, i.e, the width of the

notch at the minimum, is a function of the sample

sizes N and M:When the sample size is small, the

notch is broader and when the sample size is large,

the notch is sharper. This fact is used in deciding

what sample size should be used: choose the sam-

ple size such that the desired probability of false

alarm is attained when the parameters �

X

and �

Y

vary by a small (speci�ed) amount ��:

Finally, since our validation scheme described in

the previous section is dependent on two distance

functions � and �: Each choice of � and � gives rise

to a power function. The combination that has the

highest power function, is the best choice. See [1]

for details on power functions.

4 Distance Functions, Outliers,

and Robust Statistics

Various distance functions �(X; Y ) can be used for

computation the distance between the sets of char-

acters X and Y: We used the following symmetric

distance functions for �:

Mean Nearest Neighbor Distance:

�

Mean

(X; Y ) =

(�

Mean

(Y ;X) + �

Mean

(X ; Y ))

(N +M)

where,

�

Mean

(Y ;X) =

X

x2X

�

min

y2Y

�(x; y)

�

�

Mean

(X ; Y ) =

X

y2Y

�

min

x2X

�(x; y)

�

Trimmed Mean Nearest Neighbor Dis-

tance:

�

Trim

(X; Y ) = (�

Trim

(Y ;X) + �

Trim

(X ; Y ))=2

where,

�

Trim

(Y ;X) = Trim

x2X

�

min

y2Y

�(x; y)

�

�

Trim

(X ; Y ) = Trim

y2Y

�

min

x2X

�(x; y)

�

Here the Trim function accepts as input a set of

real numbers, orders them in an increasing order,

discards the top and bottom 10%, and returns the

mean of the rest 80%.

Median Nearest Neighbor Distance:

�

Med

(X; Y ) = (�

Med

(Y ;X) + �

Med

(X ; Y ))=2

where,

�

Med

(Y ;X) = Median

�

min

y2Y

�(x; y)

�

�

Med

(X ; Y ) = Median

�

min

x2X

�(x; y)

�

Notice that the mean NN distance is not a robust

distance measure. Thus, if for some reason, one

of the data values becomes very large, the P-value

computation will become very sensitive to this data

point. This can occur if one of the characters in the

real data set X is actually a `c' (instead of being an

`e,'), and has been identi�ed wrongly as `e'. Yet an-

other outlier source is connected characters: when

characters are segmented from a real document,

they might be touching other characters, pieces of

which might slip in. The Median and the Trimmed

Mean distance measures are robust against outliers

since they do not look at the tails of the distribu-

tion. One would expect that these should work

better in the case there are outliers.

The �(x; y) mentioned in the distance between

two individual characters x and y:We use the Ham-

ming distance for �: This is computed by count-

ing the number of pixels where the characters x



and y di�er after the centroids of x and y have

been registered. A variety of other character dis-

tances, �(x; y); and set distance functions, �(X; Y );

could have been used. (e.g. the Hausdorf distance,

rank ordered Hausdorf distance, etc.) The com-

bination of character distance �(x; y); and set dis-

tance, �(X; Y ); that give rise to the best power

function is the best pair of distances to use for the

validation procedure.

5 Experimental Results

In this section we give experimental results on syn-

thetic data: we use the validation procedure to dis-

tinguish two samples X and Y of degraded char-

acters that were simulated with di�erent param-

eter values. We change the sample size of the

datasets and study the behavior of the power func-

tion. Next, we �x the sample size and run the vali-

dation procedure for various set distance functions

�(X; Y ): The power functions of these procedures

are then compared to choose which choice of dis-

tance function is the best. Finally, we corrupt one

of the samples with outliers and then see how ro-

bust the power functions are against outliers.

The following protocol used for creating the sam-

ples X and Y: The distribution parameter �

X

of

sample X was �xed with the following param-

eter component values: �

X

= (�

f

;= �

b

= 0;

�

0

= �

0

= 1; �

X

= (�

f

; �

b

; �

0

; �; �

0

; �; k) =

(0; 0; 1; 1:5; 1; 1:5; 5): For details of the degradation

model, and the parameter values, please see [7, 8].

The distribution parameter �

Y

for sample Y was

varied by changing � = �: Other distribution pa-

rameter components of �

Y

{ �

f

; �

b

; �

0

; �

0

; k { were

same as that in the model parameter �

X

: In all

cases the noise free document that was degraded

using the model was the same (a Latex document

page formatted in IEEE Transaction style) and

the same set of 340 character `e' (Computer Mod-

ern Roman 10 point font) were extracted from the

page, for creating the sample X and the sample Y:

The validation procedure protocol was as follows:

the signi�cance level � was �xed at 0.05; the sample

sizes N =M used were 10, 20, and 60; the number

of permutation K for creating the empirical null

distribution was 1000; the number of trials T for

estimating the misdetection rate was 100.

A degraded document generated with model pa-

rameter �

X

is shown in Figure 2 (a). The power

function for the sample sizes 10, 20, 60 are shown

in Figure 1. The power function corresponding to

sample size 10 is the widest, and the power function

corresponding to sample size 60 is the narrowest.

Note all the three power functions give a misde-

tection (reject) rate close to � = 0:05 when the

sample Y has a parameter value close to that of X;

which has �

X

such that � = � = 1:5. Furthermore,

when the �

Y

has � = � far from 1.5, the misdetec-

tion rate is close to 1, which implies that the val-

idation procedure can distinguish the two samples

with high probability. An images of a document

generated with parameter values � = � = 2:0;

which the validation procedure could distinguish

from one that was generated with � = � = 1:5;

(shown in Figure 2 (a)) is shown in Figure 2 (b).

In these experiments the data sets X and Y did

not contain any outliers.
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Figure 1: Power plots as a function of sample size

N = M = f10; 20; 60g: The sample population pa-

rameter had � = � = 1:5: Notice that the power

function has a minimum near � = � = 1:5: There

were no outliers in either of the samples.

(a) (b)

Figure 2: (a) Subimage of a document. degraded

with parameter values � = � = 1:5: (b) degraded

document, simulated with � = � = 2:0: The two

samples were judged dissimilar (null hypothesis

was rejected) by the validation procedure. Sam-

ple size used was 60.

Next, we studied the sensitivity of the validation

procedure to the set distance �(X; Y ) as follows.



The data sets X and Y are collections of (syn-

thetic) degraded character `e'. Degradation pa-

rameter values for X were �xed at � = � = 1:5;

but the degradation parameters for Y were varied

from 0.6 to 2.4. Hamming distance was used for

the character-to-character distance, �(x; y): Sam-

ple size of X and Y was �xed at N =M = 60: The

mean, trimmed mean and median distances were

used to compute the power function, both, in the

presence and in the absence of outliers.

Figures 3 (a), 4 (a), and 5(a), show the power

functions in the absence of outliers when the mean,

trimmed mean distances were used. Next, we in-

troduced outliers in the datasetX but substituting

5 degraded `e's with degraded `c's. The Y data set

was unchanged. Figures 3 (b), 4 (b), and 5(b),

show the power functions in the presence of out-

liers. Clearly the median and trimmed mean near-

est neighbor distances are more robust against out-

liers, since the corresponding power functions are

not a�ected. Furthermore, it can be seen that the

median NN distance function, in the outlier-free

case, it is less `powerful' than the mean distance

function since the function lies below the mean NN

power function plot. Finally, it can be seen that the

10 % trimmed NN distance function is superior to

the other two distance functions, since the corre-

sponding power function is robust against outliers

and at the same time higher.
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Figure 3: Power functions of the validation proce-

dure when mean nearest neighbor distance is used

for the set distance functions �(X; Y ): Figure (a) is

when there are no outliers. Figure (b) corresponds

to the situation when there are 5 outliers in one of

the data sets.
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Figure 4: Power functions of the validation pro-

cedure when median nearest neighbor distance is

used for the set distance functions �(X; Y ): Fig-

ures (a) is when there are no outliers. Figure (b)

corresponds to the situation when there are 5 out-

liers in the X data set.

6 Summary

We proposed the use of power functions for com-

paring validation procedures for document degra-

dation models and for selecting distance functions

used in the validation procedure. Power functions

allow us to compare validation procedures with

same signi�cance level by comparing their false

alarm rates. Furthermore, since there is no jus-

ti�cation for assuming a parametric form for the

null distributions, we adopt a non-parametric hy-

pothesis testing methodology. The method is gen-

eral enough that any two validation schemes can

be compared. Experimental results show that in

the presence of outliers, the trimmed mean nearest-

neighbor distance is the best.
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A Null Distributions and Power

Functions for Gaussian Sam-

ples

In this appendix we compute the null distribu-

tions and power function associated with the inter

cluster mean distance �(X; Y ) when x

i

and y

i

are

Gaussian distributed. Let X = fx

1

; x

2

; : : : ; x

N

g;

where x

i

2 R; and x

i

� N(�

X

; �

2

): Similarly,

let Y = fy

1

; y

2

; : : : ; y

N

g; where y

i

2 R; and

y

i

� N(�

Y

; �

2

): Here �

2

is known, and �

X

and

�

Y

are unknown. The problem is to test the null

hypothesis,H

N

; that �

X

= �

Y

; against the alter-

nate hypothesis, H

A

; that �

X

6= �

Y

:

Now, we know that

�x =

1

N

N

X

i=1

x

i

� N(�

X

; �

2

=N)

�y =

1

N

N

X

i=1

y

i

� N(�

Y

; �

2

=N) :

Therefore,

�x� �y � N(�

X

� �

Y

; 2�

2

=N) :

Now, let d = �(X; Y ) = N(�x � �y)

2

=(2�

2

): Thus

under the null hypothesis that �

X

= �

Y

; we have

d � �

2

1

:

Thus, instead of empirically computing the dis-

tributions as described in section 2 we can use the

above distance function and the corresponding an-

alytic form of the null distribution to test the null

hypothesis.

The power function is the distribution of the test

statistic under the alternate hypothesis. Here the

two sample test statistic d is distributed as the non-

central chi-square distribution �

2

1;b

where the non-

centrality parameter b = N(�

X

� �

Y

)

2

=(2�

2

):


