
PSET: A Page Segmentation Evaluation Toolkit

Song Mao and Tapas Kanungo

Laboratory for Lanuage and Media Processing,
Center for Automation Research,

University of Maryland at College Park,
College Park, MD 20742, USA

kanungo@cfar.umd.edu

Empirical performance evaluation of page segmentation algorithms has be-
come increasingly important due to the numerous algorithms that are being
proposed each year. In order to choose between these algorithms for a specific
domain it is important to empirically evaluate their performance. To accomplish
this task the document image analysis community needs i) standardized docu-
ment image datasets with groundtruth, ii) evaluation metrics that are agreed
upon by researchers, and iii) freely available software for evaluating new algo-
rithms and replicating other researchers’ results.

In an earlier paper (SPIE Document Recognition and Retrieval 2000) we
published evaluation results for various popular page segmentation algorithms
using the University of Washington dataset. In this paper we describe the PSET
evaluation package, which was used to evaluate the segmentation algorithms.
The description of the package will allow researchers to understand the soft-
ware better, replicate our results, evaluate new algorithms, experiment with
new metrics and datasets, etc. The software is written using the C language on
the SUN/UNIX platform and is being made available to researchers at no cost.

1 Introduction

It is important to quantitatively monitor progress in any scientific field. The
information retrieval community and the speech recognition community, for ex-
ample, have yearly competitions in which researchers evaluate their latest algo-
rithms on clearly defined tasks, datasets, and metrics. To make such evaluations
possible, researchers have access to standardized datasets, metrics, and freely
available software for scoring the results produced by algorithms [18, 1].

In the Document Image Analysis area, regular evaluations of OCR accuracy
have been conducted by UNLV [3]. Page segmentation algorithms, which are
crucial components of OCR systems, were at one time evaluated by UNLV based
on the final OCR results, but not on the geometric results of the segmentation.
Recently [13], we empirically compared various commercial and research page
segmentation algorithms, using the University of Washington dataset. We used
a well-defined (geometric) line-based metric and a sound statistical methodology
to score the segmentation results. Furthermore, unlike the UNLV evaluations,
we trained the segmentation algorithms prior to evaluating them.

2 Song Mao and Tapas Kanungo

In this paper we describe in detail the software architecture of the package
called PSET, which we used in [13, 10] to evaluate page segmentation algorithms.
This package was developed by us at the University of Maryland and will be
made available to researchers at no cost. Publication of the package will allow
researchers to implement our five-step evaluation methodology and evaluate their
own algorithms. Software architecture can be described using methods such as
Petri Nets and Data Flow Diagrams [7]. We describe the architecture of PSET,
the I/O file formats, etc. using Object-Process Diagrams (OPDs) [4], which are
similar in spirit to Petri Nets. The package, called the Page Segmentation Evalu-
ation Toolkit (PSET), is modular, written using the C language, and runs on the
SUN/UNIX platform. The software has been structured so that it can be used at
the UNIX command line level or compiled into other software packages by calling
API functions. The description in this paper will aid users in using, updating,
and modifying the PSET package. It will also help users to add new algorithm
modules to the package and to interface it with other software tools and pack-
ages. The PSET package includes three research page segmentation algorithms;
1 a textline-based benchmarking algorithm; and a Simplex-based optimization
algorithm for estimating algorithm parameters from training datasets.

This paper is organized as follows. In Section 2, we discuss the page seg-
mentation problem. In Section 3, we present our five-step page segmentation
performance evaluation methodology. In Section 4, we describe the architecture
and file formats of our PSET package in detail and show how to implement
each step of our five-step performance evaluation methodology. In Section 5, we
give the hardware and software requirements for using the PSET package. In
Section 6, we discuss our future work. Finally in Section 7, we give a summary
of the article. The work reported in this paper is also available as a technical
report [14].

2 The Page Segmentation Problem

There are two types of page segmentation, physical and logical. Physical page
segmentation is a process of dividing a document page into homogeneous zones.
Each of these zones can contain one type of object. These objects can be of type
text, table, figure, halftone image, etc. Logical page segmentation is a process of
assigning logical relations to physical zones. For example, reading order labels
order the physical zones in the order in which they should be read. Similarly,
assigning section and sub-section labels to physical zones creates a hierarchical
document structure. In this paper, we focus on physical page segmentation and
refer to it as simply page segmentation hereafter.

Page segmentation is a crucial preprocessing step for an OCR system. In
many cases, OCR engine recognition accuracy depends heavily on page segmen-
tation accuracy. For instance, if a page segmentation algorithm merges two text
zones horizontally, the OCR engine will recognize text across text zones and
1 We implemented the X-Y cut algorithm [15] and the Docstrum algorithm [16]. Kise

[9] provided us the C implementation of his Voronoi-based algorithm.

PSET: A Page Segmentation Evaluation Toolkit 3

hence generate unreadable text. Page segmentation algorithms can be catego-
rized into three types: top-down, bottom-up, and hybrid approaches. Top-down
approaches iteratively divide a document page into smaller zones according to
some criterion. The X-Y cut algorithm developed by Nagy et al. [15] is a typical
top-down algorithm. Bottom-up approaches start from document image pix-
els, and iteratively group them into bigger regions. The Docstrum algorithm
of O’Gorman [16] and the Voronoi-based algorithm of Kise et al. [9] are rep-
resentative bottom-up approaches. Hybrid approaches are usually a mixture of
top-down and bottom-up approaches. The algorithm of Pavilidis and Zhou [17]
is an example of the hybrid approach that employs a split-and-merge strategy.

3 Performance Evaluation Methodology

In order to objectively evaluate page segmentation algorithms, a performance
evaluation methodology should take into consideration the performance metric,
the dataset, the training and testing methods, and the methodology of analyzing
experimental results. In this section, we introduce a five-step methodology that
we proposed earlier [13, 11, 12]. The PSET package is an implementation of this
methodology.

Let D be a given dataset containing (document image, groundtruth) pairs
(I, G), and let T and S be a training dataset and a test dataset respectively.
The five-step methodology is described as follows:

1. Randomly divide the dataset D into two mutually exclusive datasets: a train-
ing dataset T and a test dataset S. Thus, D = T ∪ S and T ∩ S = φ, where
φ is the empty set.

2. Define a computable performance metric ρ(I,G, R). Here I is a document
image, G is the groundtruth of I, and R is the OCR segmentation result on
I. In our case, ρ(I, G, R) is defined as textline accuracy, as described in [14].

3. Given a segmentation algorithm A with a parameter vector pA, automat-
ically search for the optimal parameter value p̂A for which an objective
function f(pA; T , ρ, A) assumes the optimal value on the training dataset
T . In our case, this objective function is defined as the average textline error
rate on a given training dataset:

f(pA; T , A, ρ) =
1

#T


 ∑

(I,G)∈T
1− ρ(G,SegA(I,pA))


 .

4. Evaluate the segmentation algorithm A with the optimal parameter p̂A on
the test dataset S by

Φ
({ρ(G,SegA(I, p̂A))|(I, G) ∈ S})

where Φ is a function of the performance metric ρ on each (document image,
groundtruth) pair (I, G) in the test dataset S, and SegA(·, ·) is the segmen-
tation function corresponding to A. The function Φ is defined by the user.

4 Song Mao and Tapas Kanungo

In our case,

Φ
({ρ(G,SegA(I, p̂A))|(I, G) ∈ S}) = 1− f(p̂A;S, ρ, A),

which is the average of the textline accuracy ρ(G,SegA(I, p̂A)) achieved on
each (document image, groundtruth) pair (I, G) in the test dataset S.

5. Perform a statistical analysis to evaluate the statistical significance of the
evaluation results, and analyze the errors to identify/hypothesize why the
algorithms perform at their respective levels.

4 Architecture, File Formats, and Evaluation
Methodology

In this section, we first describe the software architecture of the PSET package
and the formats of the files used to communicate with the package. Next we
show how this software package can be used to implement the five steps of
the page segmentation evaluation methodology described in Section 3. Generic
file format descriptions as well as specific examples are provided, for clearer
understanding. This description of the architecture and file formats will allow
users to i) understand the working of the PSET package, ii) replicate our results,
iii) modify the parameter files for datasets, metrics, etc. and conduct their own
evaluation experiments, iv) understand, maintain and improve the software, and
v) evaluate new algorithms and compare the results with existing algorithms.
The PSET package has been used to evaluate five page segmentation algorithms
[13, 12].

4.1 Architecture and File Formats

The PSET package can be used to i) automatically train a given page segmen-
tation algorithm, i.e., automatically select optimal algorithm parameters on a
given training dataset, and ii) evaluate the page segmentation algorithm with the
optimal parameters found in i) on a given test dataset. Figure 1 shows the overall
architecture of the PSET package and illustrates these two functionalities.

The overall architecture shows all the input files that are needed to conduct
the training and testing experiments for a given page segmentation algorithm,
and all the output files generated by the training and testing procedures. Ta-
ble 1 lists all the files used, their purposes, and their file name extensions. Input
files include various initial algorithm parameter files (an optimization algorithm
parameter file (opr), a page segmentation algorithm parameter file (spr), and a
benchmark algorithm parameter file (bpr)), dataset files (lst), a shell file (sh),
and experimental protocol files (training protocol file (trp) and test protocol file
(tep)). Users need to provide these files to the PSET package to conduct training
or testing experiments. The output files of the training phase include a train-
ing report file (trr) and an optimal segmentation algorithm parameter file (spr).
The training report file (trr) records intermediate as well as final training results

PSET: A Page Segmentation Evaluation Toolkit 5

TrainSeg

Train Protocol
File

(trp)

Training Dataset

(lst)
Filename List

Groundtruth
(DAF)

(trr)

Train Report

File

Document
Images
(TIF)

Segmentation
Algorithm

Parameter File
(spr)

Optimization
Algorithm

Parameter File
(opr)

TestSeg

Test Dataset
Filename List

(lst)

Test Protocol
File
(trp)

Groundtruth
(DAF)

Document
Images
(TIF)

Optimal
Segmentation

Algorithm
Parameter File

(spr)

Test Report
File

(ter)

Parameter File

Benchmark
Algorithm

(bpr)

Weight
File

(wgt)

Segmentation
Algorithm
Shell File

(sh)

Fig. 1. Overall PSET architecture. The left half of the architecture represents the
training phase; the right half represents the testing phase. Note that in the testing
phase, the optimal page segmentation parameter found in the training phase is used.
The training and testing phases use the same performance metric related input files
(benchmark algorithm parameter file (bpr) and weight file (wgt)) and the same seg-
mentation algorithm shell file (sh).

Table 1. Summary of the file formats in the PSET package.

File Type Extension Description

Dataset List File lst It saves the root name of each image in a dataset.

Train Protocol File trp It saves the protocol parameters of the training experiment.

Test Protocol File tep It saves the protocol parameters of the testing experiment.

Segmentation Algorithm spr It saves the parameters of a page segmentation algorithm
Parameter File that are to be trained.

Benchmarking Algorithm bpr It saves all parameters of a benchmarking algorithm.
Parameter File

Optimization Algorithm opr It saves all parameters of an optimization algorithm.
Parameter File

Groundtruth File DAF It saves document images and their groundtruth information.

Segmentation Result File dafs It saves document images and their segmentation results.

Train Report File trr It saves the training result of a segmentation algorithm.

Test Report File ter It saves the test result of a segmentation algorithm.

Weight File wgt It saves a set of weights for a set of error measures.

Segmentation Algorithm sh It saves a shell command for running segmentation
Shell File algorithm executable. It is a Bourn shell program.

of the training experiment. The optimal segmentation algorithm parameter file
(spr) records the optimal segmentation algorithm parameter values found in the
training phase. The output of the testing phase is a testing report file (ter),
which records a set of error measures, timing and performance scores for each
image in the test dataset, and a final average performance score over all images
in the test dataset. Figure 2 shows various input file formats. Figure 3 shows the
training report file format and Figure 4 shows the test report file format.

The parameter values in the parameter files are first read into the corre-
sponding data structures inside the TrainSeg and the TestSeg modules as shown
in Figure 5. The Train module shown in Figure 5(a) is shown at a finer level
of detail in Figure 6, where the interaction of the optimization algorithm and
the objective function computation module is illustrated. A detailed view of the
Objective Function Genscore showing the interaction between the segmentation
algorithm module and the performance metric computation module is shown in

6 Song Mao and Tapas Kanungo

[comments]

DATASET = <dataset file name>
GROUNDTRUTH DIR = <groundtruth directory name>
IMG DIR = <image directory name>
GT SUFFIX = <groundtruth file suffix>
SG SUFFIX = <segmentation result file suffix>
IMG SUFFIX = <image file suffix>
TRAIN RESULT DIR = <training result file location>
OPT ALG = <optimization algorithm name>
BEN ALG = <benchmark algorithm name>
SEG ALG = <page segmentation algorithm name>

[comments]

DATASET = <testing dataset file name>
GROUNDTRUTH DIR = <groundtruth directory name>
IMG DIR = <image directory name>
GT SUFFIX = <groundtruth file suffix>
SG SUFFIX = <segmentation result file suffix>
IMG SUFFIX = <image file suffix>
TEST RESULT DIR = <testing result file location>
BEN ALG = <benchmark algorithm name>
SEG ALG = <page segmentation algorithm name>

[comments]
<parameter 1 name> = <value>
<parameter 2 name> = <value>

. = .

. = .

. = .
<parameter N name> = <value>

(a) (b) (c)
File Attribute Name Description

DATASET The filename of a list file that saves the root name of
each image in a dataset.

GROUNDTRUTH DIR The location of the groundtruth files.

IMG DIR The location of the image files.

GT SUFFIX The suffix of a groundtruth filename, e.g. the suffix of
groundtruth file “A001.DAF” is “.DAF”.

SG SUFFIX The suffix of a segmentation result filename, e.g. the suffix of
segmentation result file “A001.dafs” is “.dafs”.

IMG SUFFIX The suffix of an image filename, e.g. the suffix of image file
“A001BIN.TIF” is “BIN.TIF”.

TRAIN RESULT DIR The location of the training result files generated by a training experiment.

TEST RESULT DIR The location of the testing result files generated by a test experiment.

OPT ALG The name of the optimization algorithm that is to be used.

BEN ALG The name of the benchmarking algorithm that is to be used.

SEG ALG The name of the page segmentation algorithm that is to be used.

(d)

Fig. 2. Input file formats. The training protocol file format is shown in (a), the test
protocol file format is shown in (b), and the algorithm parameter file format is shown
in (c). The description of the attributes in (a) and (b) is given in (d).

Figure 7(a). Finally, a blown-up view of the Test module shown in Figure 5(b)
is shown in Figure 7 (b).

4.2 Implementing the Evaluation Methodology

In this section we show how a user can implement each step of the five-step
evaluation methodology described in Section 3. Each variable in the methodology
is mapped to a specific parameter file and each step is mapped to a specific group
of modules in the package.

1. The training dataset T is specified in the image root name list file (lst).
The file name and location of the list file and the location of the image and
groundtruth files are specified in the training protocol file (trp). This infor-
mation is later read into the Train Protocol Parameter Data Structure as
shown in Figure 5(a). Similarly, a test dataset S is specified in another image
root name list file (lst). The file name and location of the list file and the
location of image and groundtruth files are specified in the test protocol file
(tep). This information is later read into the test protocol parameter data
structure as shown in Figure 5(b). Other experimental protocol parameters
such as file suffix and algorithms used are also specified in the training pro-
tocol file (trp) and test protocol file (tep). Figures 2(a) and (b) show generic
formats for these two files.

2. The performance metric ρ(I, G, R) is computed in module B, shown in Fig-
ures 7(a) and (b). (I,G) is an (image, groundtruth) pair, which is represented

PSET: A Page Segmentation Evaluation Toolkit 7

[experimental environments]
#
Feval p[1] p[2] . . . p[n] score timing plow[1] plow[2] . . . plow[n] Flow
1 <data> <data> . . . <data> <data> <data> <data> <data> . . . <data> <data>
2 <data> <data> . . . <data> <data> <data> <data> <data> . . . <data> <data>
.
.
.
M <data> <data> . . . <data> <data> <data> <data> <data> . . . <data> <data>

Optimal Parameter Vector = <param 1> <param 2> . . . <param N>
Optimal Performance Value = <data>

End of the training.

(a)

Item Name Description

Feval Number of objective function evaluations.

p[1], p[2], . . . , p[n] Current objective function parameter vector value;
here the objective function parameter vector is the
page segmentation parameter vector being trained.
n is the dimensionality of the parameter vector.

score Current performance measure, in this case,
textline error rate.

timing The time it takes to obtain the current score.

plow[1], plow[2], . . . , plow[n] The objective function parameter vector value that
gives the best score so far.

Flow The best score so far — in this case, the minimum
textline error rate so far.

(b)

Fig. 3. The training report file format. The format is shown in (a) and the description
of each column entry in (a) is shown in (b).

<experimental environments>
#
#Img nSpl nMrg nFA nSplL nMrgL nMisL nErrL nGtL score timing
 <data> <data> <data> <data> <data> <data> <data> <data> <data> <data>
 <data> <data> <data> <data> <data> <data> <data> <data> <data> <data>
.
.
.
 <data> <data> <data> <data> <data> <data> <data> <data> <data> <data>

The average textline accuracy = <data>

End of testing.

(a)

Column Entry Description

Img The root name of the current image file.

nSpl The number of split errors.

nMrg The number of horizontal merge errors.

nFA The number of false alarm errors.

nSplL The number of split textlines.

nMrgL The number of horizontally merged textlines.

nMisL The number of mis-detected textlines.

nErrL The number of error textlines (textlines that are
either split, horizontally merged or mis-detected).

nGtl The number of groundtruth textlines.

score The performance measure (textline error rate) on current image.

timing The time taken to obtain the score.

(b)

Fig. 4. The test report file format. The format is shown in (a) and the description of
each column entry in (a) is shown in (b).

8 Song Mao and Tapas Kanungo

Groundtruth

Document
Images

Dataset
Filename List

(lst)

Benchmark
Algorithm

Parameter File
(bpr)

Segmentation
Algorithm

Parameter File
(spr)

(sh)

Segmentation
Algorithm
Shell File Data Structure

Parameter
Benchmark Alg.

Data Structure
Alg. Parameter
Segmentation

(TIF)

(DAF)

ReadBenchParam ReadSegParam

Weight
File

(wgt)

Optimization
Algorithm

Parameter File
(opr)

Algorithm
Optimization

Data Structure

ReadOptParam

Train Protocol
File
(trp)

ReadTrainProtocol

Train Protocol
Data Structure

Train

(trr)
File

Train Report

 Test

Test Protocol
Data Structure

Groundtruth

Document
Images

Test Report

Dataset
Filename List

(lst)
File
(tep)

Test Protocol Benchmark
Algorithm

Parameter File
(bpr)

Weight

(wgt)
File

(sh)

Segmentation
Algorithm
Shell File Data Structure

Parameter
Benchmark Alg.

File
(ter)

(TIF)

(DAF)

ReadBenchParam ReadSegParamReadTestProtocol

Optimal
Segmentation

Algorithm
Parameter File

(spr)

Data Structure
Alg. Parameter
Segmentation

Optimal

(a) (b)

Fig. 5. Parameter reading stage of the training phase (a) and the testing phase (b).
At this level, various parameter files are read into their corresponding data structures
which are fed into the Train and Test modules.

Test Protocol

Data Structure

Benchmark
Alg. Parameter
Data Structure

Segmentation
Algorithm
Shell File

(sh)

Weight File
(wgt)

(trr)
File

Train Report

Optimization
Algorithm

(spr)
Parameter File

Algorithm
Optimal Seg.Optimization

Data Structure
Alg. Parameter

Document
Images
(TIFF)

Groundtruth
(DAF)Objective

Function
Genscore

Segmentation
Alg. Parameter
Data Structure

Average Score

Fig. 6. The Train module. In this module, the objective function is optimized over a
given training dataset. Two files are generated by this module, a train report file (trr)
and an optimal segmentation algorithm parameter file (spr).

by two single pages in the architecture, and R is the segmentation result file
represented by Segmentation Result (dafs). The error counter algorithm for
generating a set of error measures is implemented in the Bench module. In
the BenchScoring module, a weighted error measure 1 − ρ(I, G, R) is com-
puted. The formal definitions of error measures and performance metrics are
given in [14]. To compute a performance metric, two input files, a benchmark
Algorithm Parameter File (bpr) and a weight file (wgt), are required. Users
can substitute their own performance metrics and error counters in place of
these two modules. However, this also requires that the users write a new
ReadBenchParam module and define a new benchmark algorithm parameter
data structure as shown in Figure 5.

3. The objective function f(pA; T , A, ρ) is represented by the module C in Fig-
ure 7(a), where page segmentation algorithm A is represented by module

PSET: A Page Segmentation Evaluation Toolkit 9

Bench

Finished ?

Y

Seg Module

ReadWeight

Segmentation
Algorithm Benchmark

ParameterAlg.

BenchScoring

Error
Measurement
Data Structure

Data Structure
Score

Score
Average

Compute

Average Score

Weight

Data Structure

Weight File
(wgt)

Alg. Parameter
Segmentation

Data Structure
Shell File

(sh) Data Structure

SetUp

Experimental
parameters

Experiment
Environment

N

Select Next
Image and

Groundtruth
Pair

Groundtruth

Parameter

Images
Document

(TIF)

Train Protocol

Data Structure

(DAF)

(TIF)

Document
Image

(dafs)
Result

Segmentation

Groundtruth
(DAF) C

BA

Bench

Finished ?

Y

Seg Module

ReadWeight

Segmentation
Algorithm Benchmark

ParameterAlg.

BenchScoring

Error
Measurement
Data Structure

Data Structure
Score

Score
Average

Compute

Average Score

Weight

Data Structure

Weight File
(wgt)

Shell File
(sh) Data Structure

Φ =
1 - Average Score

Test Report
File
(ter)

Data Structure
Alg. Parameter
Segmentation

Optimal

SetUp

Experimental
parameters

Experiment
Environment

N

Select Next
Image and

Groundtruth
Pair

Groundtruth

Images
Document

(TIF)

(DAF)

Test Protocol
Parameter

Data Structure

Document
Image
(TIF)

Groundtruth
(DAF)

Result
Segmentation

(dafs)

C

BA

(a) (b)

Fig. 7. Software architectures of the objective function module and the test module.
Module A represents the page segmentation algorithm module, module B represents
the page segmentation error counter and scoring module, and module C represents the
objective function module. The test module in (b) has sub-modules similar to those
in (a). It also has a module for computing a final testing performance score (average
textline accuracy).

A, the training dataset T is specified in the train protocol parameter data
structure, the computation of performance metric ρ is conducted in mod-
ule B, and objective function parameter vector pA is represented by the
segmentation algorithm parameter data structure in the architecture. The
optimization procedure is shown in Figure 6 in a simplified representation.
In addition, a benchmark algorithm parameter file (bpr), weight file (wgt),
shell file (sh), list file (lst), training protocol file (trp), optimization algo-
rithm parameter file (opr) and segmentation algorithm parameter file (spr)
are required to conduct objective function optimization. The optimal objec-
tive function parameter vector p̂A is stored in the file optimal segmentation
algorithm parameter file (spr) shown in Figure 6. Users can substitute their
own objective function in place of the architecture shown in Figure 7(a) and
their own optimization algorithm module in the place of the Optimization
Algorithm module shown in Figure 6. Again, they need to write new param-
eter reading functions and define corresponding data structures. This step
generates two files, a training report file (trr) and an optimal segmentation
algorithm parameter file (spr). Figure 8(a) shows a sample training report
file.

10 Song Mao and Tapas Kanungo

#
File: TrainDocstrum 1,4,2.1,6.trr
Purpose: training result of the Docstrum algorithm using Simplex algorithm.
User: maosong
Date: 09/18/2000/ 19:12:25
Operating system: SunOS, 5.6, Generic 105181-19
Machine name: hanzi.cfar.umd.edu
Working directory: /hanzi/maosong/software/SegEvalToolKit/pset-1.0/experiments/TrainDocstrum
Machine type: sun4u
Command line: TrainSeg -p train protocol.trp -b bench.bpr -o simplex.opr -s docstrum.spr
-w weight.wgt -t TrainDocstrum 1,4,2.1,6.trr -r docstrum optimal 1,4,2.1,6
#

Feval p[1] p[2] p[3] p[4] score timing plow[1] plow[2]plow[3]plow[4]Flow
1 1.000 4.000 2.100 6.000 39.874 206.6 1.000 4.000 2.100 6.000 39.874
2 2.000 4.000 2.100 6.000 39.698 155.0 2.000 4.000 2.100 6.000 39.698
3 1.000 5.000 2.100 6.000 43.337 206.3 2.000 4.000 2.100 6.000 39.698
4 1.000 4.000 3.100 6.000 44.073 207.5 2.000 4.000 2.100 6.000 39.698
5 1.000 4.000 2.100 7.000 39.874 204.2 2.000 4.000 2.100 6.000 39.698
6 1.250 4.250 2.100 6.250 39.761 172.2 2.000 4.000 2.100 6.000 39.698
7 1.500 4.500 1.100 6.500 34.718 160.4 2.000 4.000 2.100 6.000 39.698
8 1.750 4.750 0.100 6.750 30.138 158.4 2.000 4.000 2.100 6.000 39.698
9 1.438 4.188 1.600 6.438 35.710 162.4 1.750 4.750 0.100 6.750 30.138
10 1.875 3.375 1.100 6.875 25.513 155.1 1.750 4.750 0.100 6.750 30.138
11 2.312 2.562 0.600 7.312 10.513 153.2 1.750 4.750 0.100 6.750 30.138
12 1.766 3.828 1.225 6.766 31.076 156.2 2.312 2.562 0.600 7.312 10.513
13 2.531 3.656 0.350 7.531 27.372 153.2 2.312 2.562 0.600 7.312 10.513
.
.
.
160 2.533 1.975 0.647 7.547 5.336 153.4 2.535 1.978 0.645 7.550 5.336
161 2.533 1.977 0.646 7.548 5.336 153.2 2.533 1.975 0.647 7.547 5.336

Optimal Parameter Vector = 2.533 1.975 0.647 7.547
Optimal Performance Value = 5.336

End of the training.

#
File: TestXycut 78,32,35,54.ter
Purpose: testing result of the X-Y cut algorithm.
User: maosong
Date: 09/20/2000/ 10:58:33
Operating system: SunOS, 5.6, Generic 105181-19
Machine name: hangul.cfar.umd.edu
Working directory: /a/hanzi/hanzi/maosong/software/pset-1.0/experiments/TestXycut
Machine type: sun4u
Command line: TestSeg -p test protocol.tep -b bench.bpr -s xycut optimal.spr
-w weight.wgt -t TestXycut 78,32,35,54.ter
#

ImgnSpl nMrg nFA nSplL nMrgL nMisL nErrL nGtL score timing
A001 1 0 19 1 0 0 1 35 0.029 3.060
A002 2 0 6 2 0 1 3 5 0.600 2.030
A004 1 0 5 1 0 0 1 44 0.023 2.620
A005 1 46 8 1 52 0 53 62 0.855 2.290
A006 3 0 5 3 0 0 3 116 0.026 2.890
A007 4 0 11 4 0 0 4 127 0.031 3.050
A008 1 0 2 1 0 0 1 104 0.010 2.610
A009 1 0 2 1 0 0 1 47 0.021 2.140
A00A 1 0 2 1 0 0 1 45 0.022 2.170
A00B 2 0 4 2 0 0 2 183 0.011 3.130
A00C 11 0 4 11 0 0 11 155 0.071 2.770
A00D 0 0 4 0 0 1 1 35 0.029 2.000
.
.
.
V00N 2 0 1 2 0 0 2 95 0.021 2.520

The average textline accuracy = 0.829185

End of testing.

(a) (b)

Fig. 8. Samples of a training report file format (a) and a test report file format (b).
The comment lines provide experimental environment information about the training
and test experiments. They are automatically generated by calling various GNU C
functions. They are crucial for replicating experimental results. In the data area, both
intermediate information and final results are recorded. This information can be used to
analyze the convergence properties of the training process and to study the statistical
significance of the test experiment results. A detailed description of each column entry
can be found in Figure 3(b) and Figure 4(b).

4. After the optimal objective function parameter vector p̂A has been found,
the page segmentation algorithm is evaluated on a given test dataset S.
Figure 7(b) shows the architecture of the test procedure. The test dataset S is
specified in the test protocol parameter data structure. Performance metric ρ
is computed in module B. Note that module C here has the same architecture
as module C in Figure 7(a). The computation of the final performance value
Φ is represented in module Φ. Users can define their own Φ function by
changing the Bench, BenchScoring, Compute Average Score, and Φ modules
in Figure 7(b). This step generates a test report file (ter) which records a
performance score for each image in the test dataset as well as a final average
performance score over all images in the test dataset. Figure 8(b) shows a
sample test report file.

5. The statistical analysis of the test experimental results can be conducted
using a standard statistics software package such as SPSS [5].

5 Hardware and Software Requirements

The PSET package has been developed in ANSI C on SUN Ultra 1, 2, and 5
workstations running the Solaris 2.6 operating system. The compiler used was
GNU gcc 2.7.2. Two public-domain libraries, DAFS and TIFF, were used in

PSET: A Page Segmentation Evaluation Toolkit 11

PSET and have been included in the distribution. The DAFS data structure li-
brary [6] was used for manipulating intermediate datatypes and the TIFF library
[2] was used for image I/O.

6 Future Work

We are currently generalizing the PSET package to include i) other metrics, ii)
other training/optimization algorithms, and iii) non-text region evaluation. Once
the package is in the public domain, we expect that the international community
will add other segmentation algorithms to the package. We are also porting the
package to the Linux platform. A visualization tool called TRUEVIZ [8] that
can display the segmentation and evaluation results of our PSET package is
under development. For example, different types of errors can be visualized in
various colors. TRUEVIZ can also be used for creating groundtruth for segmen-
tation. Furthermore, we are developing an XML-based representation for zone
groundtruth and intend to migrate to this representation from the current DAFS
representation.

7 Summary

We have described the architecture and the file formats of a page segmentation
evaluation toolkit (PSET). The overall architecture and the file formats were
described to illustrate two major functionalities of the PSET package: i) auto-
matically train a given page segmentation algorithm on a given training dataset
and ii) evaluate the page segmentation algorithm with the optimal parameters
found in i) on a given test dataset. The details of the architecture and sam-
ples of file formats were then described as an implementation of our five-step
performance evaluation methodology. This paper is intended to assist users in
understanding, using, updating and modifying the PSET package. It will also
aid programmers who intend to add new algorithm modules to the package and
interface it with other software tools.

Acknowledgement

We would like to thank Dr. Kise of Osaka Prefecture University for providing us
with a software implementation of his segmentation algorithm; Glenn van Doren
of the Department of Defense for supporting this effort; and Dr. Azriel Rosenfeld
of the University of Maryland for his comments.

This research was funded in part by the Department of Defense under Con-
tract MDA 9049-6C-1250, Lockheed Martin under Contract 9802167270, the
Defense Advanced Research Projects Agency under Contract N660010028910,
and the National Science Foundation under Grant IIS9987944.

12 Song Mao and Tapas Kanungo

References

1. DARPA Broadcast News Workshop, Herndon, VA, Feburary 1999.
http://www.itl.nist.gov/iaui/894.01/ publications/darpa99/index.htm.

2. Aldus Corporation. TIFF. ftp://sgi.com/graphics/tiff/.
3. A. D. Bagdanov. The fourth annual test of OCR accuracy. In A. D. Bagdanov, ed-

itor, Annual Report. Information Science Research Institute, University of Nevada,
Las Vegas, NV, 1995.

4. D. Dori, I. Phillips, and R. M. Haralick. Incorporating documentation and in-
spection into computer integrated manufacturing: An object-process approach. In
S. Adiga, editor, Applications of Object-Oriented Technology in Manufacturing.
Chapman & Hall, London, UK, 1994.

5. J. J. Foster. Data Analysis Using SPSS for Windows — A Beginner’s Guide.
SAGE Publications, London, UK, 1998.

6. T. Fruchterman. DAFS: A standard for document and image understanding. In
Proceedings of Symposium on Document Image Understanding Technology, pages
94–100, Bowie, MD, October 1995.

7. C. Ghezzi, M. Jazayeri, and D. Mandrioli. Software Engineering. Prentice Hall,
Englewood Cliffs, NJ, 1991.

8. T. Kanungo, C. H. Lee, J. Czorapinski, and I. Bella. TRUEVIZ: A
groundtruth/metadata editing and visualizing toolkit for OCR. In Proceedings of
SPIE Conference on Document Recognition and Retrieval, San Jose, CA, January
2001.

9. K. Kise, A. Sato, and M. Iwata. Segmentation of page images using the area
Voronoi diagram. Computer Vision and Image Understanding, 70:370–382, 1998.

10. S. Mao and T. Kanungo. Empirical performance evaluation methodology and
its application to page segmentation algorithms. IEEE Transactions on Pattern
Analysis and Machine Intelligence. (to appear).

11. S. Mao and T. Kanungo. A methodology for empirical performance
evaluation of page segmentation algorithms. Technical Report CAR-
TR-933, University of Maryland, College Park, MD, December 1999.
http://www.cfar.umd.edu/̃kanungo/pubs/trsegeval.ps.

12. S. Mao and T. Kanungo. Automatic training of page segmentation algorithms:
An optimization approach. In Proceedings of International Conference on Pattern
Recognition, pages 531–534, Barcelona, Spain, September 2000.

13. S. Mao and T. Kanungo. Empirical performance evaluation of page segmentation
algorithms. In Proceedings of SPIE Conference on Document Recognition and
Retrieval, pages 303–314, San Jose, CA, January 2000.

14. S. Mao and T. Kanungo. Software architecture of PSET: A
page segmentation evaluation toolkit. Technical Report CAR-TR-
955, University of Maryland, College Park, MD, September 2000.
http://www.cfar.umd.edu/̃kanungo/pubs/trpset.ps.

15. G. Nagy, S. Seth, and M. Viswanathan. A prototype document image analysis
system for technical journals. Computer, 25:10–22, 1992.

16. L. O’Gorman. The document spectrum for page layout analysis. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 15:1162–1173, 1993.

17. T. Pavlidis and J. Zhou. Page segmentation and classification. Graphical Models
and Image Processing, 54:484–496, 1992.

18. E. M. Voorhees and D. K. Harman, editors. The Seventh Text REtrieval
Conference (TREC 7). National Institute of Standards and Technology, 1998.
http://trec.nist.gov/pubs.html.

